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heSthMTCNA Wokhpwsheld from July 25, 1983 through July -'-"-
,p-. -

29, 1983. Sessions on the first four days were held at the Maesoachunetts -'"-

Insi~tute of Technology, Cambridge, Wsssachuaet~ts, and these Proceedings -•-.._,

constitute the written record of the work presented there. The fifth day's ••-
sesaion was held at The MITRtE Corporation, Rtedford, Massachusetts, and wan 9 - ..

orgtanined separately by the Office of Naval 3.seerch. As the. topics under '-°,

discunaion there were classified, the oorrespnnding papers have not bees-.:.•.

included in tnie volume.- ,.,

The Workshop attracted approzimately 160 persons; its gr'eatest stragnetb ..: B,".

was the variety of backgrounds represented by these part icipant.. Leaders -..- ',

from government laboratories and funding agencies, manaeres and technical '-.""...
staff of high technology firms, and faculty, staff, and students fromt•'-•

acadeic institutions, all cone together to contribute to the teady -•.

evolution of C3 from an art to a science.

Several themes -ontinued to appear throughout this Workshop4 themes ""r"'

which cam be traceti back through the precedingt ones. These are retflected in-"--'"

the section headings8 used in the organisation of the proceedings. The most '''-...

challengting problem facing C3• scientists is that of devising means to
evaluate the performance of alternative C3• system architectures. This must .:-- •,

take into account the sensors, communications, and weapons available to •'.•..
friendly as well as enemy forces. It must involve a closed-loop, cybernetic ""'•

model of tha entire military situation and its mist inevitably involve a ....

deep understandir•8 of the behavior of the w_• hich execute the key"--"- --

decision functions from sonar operators through battle group commanders. ••.•.

Prom the perspective of deeign, •uve illence has been reduced to a ''-.-.
relatively precise science, at least compared with the design of the '":•"'''

decision function.". -.

The purpose of these Workshops is to foster real-tine interaction, -•._ •..

betaens many' of the key contributors in the developing science of C3. In .-..-

this respect, the Sixth Workshop was a significant success. We look forward ":"-•.

to the Seventh Workshop, to be held from June 11 to June 15, 1984 in sunny ;,.°-.

San Diego, California, to be equally successful.

Sobert It. Tenney .,.-'
Cambridge, Massachusetts ... ."'"°''" '

Decembe•r 198 W.'...
.. - '" % ', . . o- --

I! i I oOo°o'-'

..................................-........._ . ." .-. .-. o.....--_i "
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INS
SDOING C2 EXPERIMENTS USING WAR GAMES

Dr. Joel S. Lawson, Jr.

Technical Director, C3 1 Systems & Technology Directorate (ELEX 06T)

C Naval Electronic Systems Command
Washington, DC 20363

INTRODUCTION

In the last few years considerable progress has been made in the development of an analytic theory of
military Command Control (C2), both as a process and as a large-scale system. There are now models of C2
organizations which permit the examination of the effects of various changes in a C2 system and which can
predict some of the behavior of such a system in a gross sense. And, due to the increased attention being
given the field, with the attendant increase in papers, workshops, etcetera, there is slowly developing a
common vocabslary for use in the emerging .C2 Theory."

What i: still lacking, however, is a body of experimental data which can be used as a "touchstone" to
guide further theoretical developments, and against which theoretical predictions can be tested.

This paper reports the results of a very rudimentary experiment which was conducted at the Naval Post-
graduate, School at Monterey, California, during the 1983 Winter Q.arter to test two specific hypotheses. As is
often t.e case, it was found necessary to molify or restate the hypotheses during the condict of the exoeriment
in order to accommodate certa irWreal world* constraints. The results, however, are both interesting i their
own right and reassuring for the prospect of being able to do further experiments in the C2 arena.

Motivation for the Experiments connected to the decision-making process and which
can be observed in numerous settings, but which are

The practical motivation for this experiment lay in a independent of the details of the scenario and the
desire to study the "decision making' process in a C2 particular participants. "
process. "Decisions" are one of the two major
products of a C2 system. (The other major C2 system Pursuing this line of reasoning, it was decided that
product may be consiJered to be "plans" which are an interesting characteristic quantity might be the
statements of actions to be taken by vav ous parts of time interval between decisions, independent of what
the system. They are generated either to implement a the decisions were. A histogram of this interval
previous decision or to provide for possible future a..a..-..t 'he n.umber of cases in which it was observed
decisions. In many cases they have the nature or shoula g;,- idea about,the tempo of activity"pre-determined decisions.") It was this motivation In a comnmand center.
which led to the approach and the experimental
procedure adopted. But this leads to the question of defining "a

decision" and how it is to be observed. At first it
In keeping with a "hard science" approach to the was felt that decisions could be grouped into broad
development of a C2 Theory, we wanted to find classes, such as tactical, strategic., or logistics,
"observables" which could be observed by people who and observed or logged by listening to the conversa-
were not part of the system and which could also be tions between members of the battle staff. In
observed by other investigators, in other experiments, practice, this turned out to be virtually impossible,

and a simpler but more exact definition of a decision
It should be noted that, by the nature of the C2 wds adopted.
business, which involves bath people and complex
scenarios. it is nearly impossible to "replicate" tn Specifically, decisions were defined as space-time
experiment. People, unfortunately, ledrn, and their events made marl ?est by either utterances or a series
behavior on a second trial will be different from of keystrokes on ý fcnputer terninal which request or
what it was on the first. Also, different "command transmit informatin or directions. This definition
teams" or battle staffs will have different satisfies the re(r'w:r.ment that the decision be
approaches or "styles" in dealing with the same basic observwble, I.-., ii" is given physical reality. (My
problem. Furthermore, in "free play" exercises, decision to ht .teak for dinner tomorrow has no
which are t•e only ones in which real decision making reality until m, , it known to the outside werld by
take. place, the dynamics of the entities in the telling someone o . ; This choice also takes us
scenario very seldom repeat. In particular, succes- down to the "on- , -,-• level" in the decision-making
sive plays of the same scenario generally do not lead process. A d..- co ask fot information, or to
to the same physical configuration of the battlefield send a message, ir, w treated equally with a
after even a few minutes of play. Therefore, decision to enge.qc 'ýhe enemy. (Perhaps a better name
"replication," in the sense it is used in physiro or for "decisions" c-ui,;cd in this way would be "trans-
chemistry, is a practical Impossibility. Rather, we actions," but tc- !- we shall continue to call them
must search for observables which are in some way d.cisions.) Th, *'inition of decision led directly

to a revised verr.o, of the original first hypothesis:

Preceding page blank 3
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A Commander or Battle Staff produces decisions The display systems in the Blue and Orange command
which are evidenced by utterances or keystrokes posts showed only those targets which had been
and which can be observed by external detected by their own sensor systems, while the
observers. Furthermore, different external umpire's position had access to the data as seen by
observers will agree or the "class" to which the each side as well as to ground truth.
observed decision belongs if the classes anc
chosen in a reasonably general manner. The class running the war game was split into three

groups (A, B, a nd C) of two (Orange and Blue) three-
The notion of a *class" of decisions will be man teams. Each was a famililarization session in
described further below, when we discuss the which they learned how to operate the keyboard and
experimental procedure. But before going on to that, make the machine do some elementary things. In the
it will be recalled that there was a second second session they actually did play a war game,
hypothesis to be tested in this experiment. The deploy their forces, and get to the point of engaging
original form of this hypothesis was stated as the enemy. The final session was run "for the
follows: record" and was based on a scenario and initial force-

disposition very similar to the ones with which they
The histogram of time intervals between had practiced. By this time the Battle Staffs seemed
decisions should give an indication of the state to be reasonabli comfortable with the system and
of training or competency of the Commander or could concentrate most of their effort on the battle -
Battle Staff. rather than the game mechanics.

It seemed reasonable to assume that a relatively To carry out the experiment and test these hypo-
untrained team would take almost random amounts of theses, observers were recruited from other students

-time to arrive at each of.d series of decisions, enrolled in the Command Control and Communications
leading to a nearly flat histogram. At the same curriculum at the Postgraduate School, and arrange-
time, a more experienced group would have better ments made to have them present during the running of
defined work habits and evidence a more peaked the games.
distribution. In fact, one might expect a bimodal
distribution, with simple or routine decisions being Only limited observations were made during tae first
made quickly and effortlessly, while more complex series of runs, to test the methodology. The data
procedures took lunger. Alternatively, a comple) reported here were all taken during the second and
problem might result in a long time delay, followed third series of runs, when the performance of the
by a flurry of activity with short apparent Battle Teams had become reasonably stable.
inter-transactien times.

Experimental Procedure
Unfortunately the data collected in this experiment
do not allow for a simple determination of which For the experiment, each observer was equipped with a
decisions may have resulted from some previous one. clipboard of data sheets wnich had a synchronized
Nor is there any direct way to associate one decision clock mounted on it. Thcy were instructed to record
with another in an input-output sense. Investigation to the nearest second when they thought they observed
of these matters will have to await an improved a "decision' and the "class* of that decision. A
experimental procedure. sample of the data sheet is reproduced in Figure 1.

which also shcws the classes of decisions used in
The Experimental Setting this experiment. These classes were intended to be

generic in nature and encompass nearly all the situa-
An opportunity to test these hypotheses arose during tions which were expected to be observed.
the 1983 Winter Quarter at the Naval Postgraduate
School, Monterey, California. The observer was also asked, if de had tiioe, to enter

any'kTi'fying information in the "Noteso column.
A series of couiiputer-based war games were to be run, The columrns for *Game Time" and "Enter Time" were
using the Warfare Environment Simulator (WES) at the provided to allow correlation to game time (which can
Naval Ocean Systems Center (NOSC), San Giego, be faster or slower than clock time) and to note the
California, to which the Postgraduate School has a time when an instruction which had been observed
remote access capability. The purpose of theto games passing from one team member to another, was actually

- was to give the students in the Operations Research entered on the keyboard. The latter turned out to be
curriculum an opportunity to get "haids-on" an impossible task as the keyboards were in such
experience with the operation of a war game. Thus, constant use is to preclude connecting any particular
the subject "Battle Staffs" were certainly set of keystrokes with any specific utterance. (In
Inexperienced and, in fact, being made up of members future experiments it may be possible to achieve some
of all four services, many of the players were of these reasurements by installing appropriate
unfamiliar with Navy terminology and procedures. "hooks" in the game software.)

The WES facility at the Postgraduate School at that After the experimental session, the observations were
time consisted of three sets of displays, one each transcribed into a computer program which computed
for the Orange and Blue teams and one for the umpire the desired time intervals and could generate various
or game coordinator. Each set of displays had a histograms of the results. Figure 2 is a sample of a
large graphic display of the theater of operations in data file generated by this program.
the center with a smaller alphanumeric display and
keyboard on each side of it. The scale of the As shown in the Figure, it was eventually decided to
peograprtic display could be changed to provide a classify the decisions by "type" as well as "class."
zoom" capability and appropriate symbology depicted This was partly due to the confusion between dif-

lie location of objects. One of the alphanumeric ferent observers as to which class a particular
displays was generally used only as a status board, decision should be placed in, and partly because of
while the other was used to give instructions to the the limited number of observations of members of a
machine to effect control of that side's forces. particular class. By introducing a definition of

types" of decisions as either "information

4



decisions" or "action decisions," the sample size was recording a similar series of events. A detailed .
effectively increased and the differences between comparison of their event logs bears this out. In
observers was reduced to a negligible amount, fact, in all cases where there were two or more
Examples of this distinction are decisions which deal observers watching the same battle staff, there was
with "information," such as requesting status or remarkable agreement in what they logged as
identity, and those decisions which deal with "decisions" or transactions.
"action," such as deploying a force or changing the
EMCON condition. The two major sources of nonconformity of the logs-

were the differences of interpretation mentioned ,
With these additions to the data definitions, the above and a very simple but important physical liuta-
time intervals are defined as follows: tation. Because the battle staff l.crc ittir,

side-by-side in front of the displays, the observers
TO - real world clock time tended to sit on either side of them so they could
TI a tire since last decision, independent of both see the displays and hear what the group was.

its class talking about. This led to one observer being able
T2 a change in Tl since last Tl event to hear remarks about what was on the status board
T3 - time since last decision of same "type" better than the other, while the second was more 0
T4 a change in T3 since last T3 event alert to directions to the keyboard operator.
TS - time since last decision of same "class"
T6 a change in TS since 1"st TS event Nonetheless, as a general rule the overlap of the

logs of pairs of observers was about 60 percent, even
By generating such data files on disk, each repre- without any serious attempt to agree on just how the
senting the observations of one observer (using the classification scheme would be applied. At the
observer's name as file name) duoing a game he grosser level of whether it was an "action" trans-
observed (using the team name and game number as a action or one dealing with information,. the agreement
file extension), the data was set up to allow com- was nearly 80 percent. The "disagreements" are
parison of different observers as well as different nearly all accounted for by a missing entry on one of
teams and games. the logs. That is, one observer logged an event

which the other did not. In most cases this can be
The results of this Aialysis are reported In the next explained as a result of the placement of the
section. observer relative to the battle staff, as mentioned

above.
Experimental Results

Moreover, data taken by the same observer watching
Before examining the specific experimental results, a different Battle Staffs produces plots very similar
word about the choice of "classes of transactions" is to those shown in Figures 3 and 4. So the distribu-
in order because they turned out to influence the tion of time intervals between decisions does seem to
apparent results. In particular, the distinction be a characteristic quantity, at least in this
between ordering the deployment of one or two units setting.
or platforms and ordering the deployment (e.g., a
course change) of the whole force was interpreted An interesting change is observed, however, when the
Oifferently by different observers. And the same was time between successive action or information trans-
true of requests for the status of individual units actions is plotted, as in Figures 5 and 6.. The

or of a major portion of the force. Much of this action decisions still show the Rayleigh-like distri-
Confusion could have been overcome if there had been bution, while the information decisions are more
more time to test the methodology and have the data uniformly distributed. No explanation for this is
takers agree on some conventions. As it was, there offered, but an interesting comparison with some
was a minimum amount of coordination between the other data will be made below. (Also it was noted
observers, and each one made up his own rules as to that some observers seemed to be more qensitivt to .-
how he would classify the events he observed, action decisions than to Information decisions,, per-

haps reflecting their personality more than their
The basic classes were originally chosen because it location in the command space.)
was assumed tiat they were sufficiently general to .- '

encompass all the transactions which were likely to Based on these results, it seems that the first of
take place, while also being representative of the hypotheses to be tested is confirmed by the data
distinctly different sorts of activity which one which was taken during this experiment.
would expect to see in a command center.

As far as the second hypothesis is concerned, we can
In practice, It appecrs that these were reasonable only report that there is no significant difference
assumptions, but that the definition of the "classes between the data obtained in the second and third
of transactions" can probibly be improved, and in sets of war games. If there was any "learning
fact should probably be tailorcd to match the nature effect," it was masked by other attributes of the
of the scenario and/or level of command which is game.
being examined. Figures 3 and 4 present a typical
comparison of the time between transactions, tnde- A final interesting observation is that in essential-
pendent of the type or class of transaction, as ly all cases the observers logged about two-thirds of
recorded by two different observers watching the same the transactions as action decisions and only
battle staff. These Figures are histograms of the one-third as information decisions. This may be
time intervals between observed decisions, grouped partly due to the nature of the WES facility, in
into 18-second wide bins. (The units of "width" are which the Battle Staffs have to issue a rather large
seconds.) For ease of comparison, the actual number number of maneuvering instructions to their
of observations has been normalized to 100 so these (computer-simulated) forces. This has the effect of
represent percentaqe distributions, putting the Battle Staff in a much more "tactical"

role than a "command" role. Also, with only one
It is immediately obvious that the observers were command center on each side, there were no superiors
apparently observing the same sort of behavior and or subordinates to answer questions for or receive
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queries from. A third cause may ha',e been the facility installed to support its war gaming
presence of dlectronic status boards~ widch provided functions since these data were Laken.
information without the verbal clues which permitted
the transaction to be recorded. Conclusions

Comparison With a Manual War Game First, it seems evident that one can define space-
time events (which we shall call decisions or

Coincident with the conduct of this experiment, the transactions) which deal with either actions or
"historical logs" of a game run at the war-gaming information and which are miade observable through
facility at the Naval War College at Newport, Rhode utterances or keystrokes marep by the Battle Staff, on -

%lahnd. dzrri~ tii.e preceding fall became available. which different observers will agree. That is, dif-
ferent observers will report observing the same type

This game also involved some inexperienced players of event at the same ti-c. And it seems likely that
but these were supported by trained and experienced these space-time events could be further subdivided
Naval officers, and both sides had had considerable with more careful training and discussion among the
time to develop their plans before the game com- observers.
menced. In addition to the game being basically a
manual one without automated statts boards, etc., Second, the gross inter-transaction time has a
there were severi1 levels of command represented on distribution not unlike a Rayleigh distribution, and
each side. Thus it was quite a different environment utich seems to be a common behavior even in quite
and perhaps more closely simulated the conditions different situtations.
which one might expect in a typical commiand node in a
Navy C2 system. Third, the inter-transaction time between trans-

actions of the same type may differ between different
In o;rder to obtain some comparative data, the logged types.
events were divided Into the classes shown in Figure
7. These classes were chosen as being more repre- Fourth, the time between transactions seems to be a
sentative of the log entries, although they still minimum at the level of the highest won-scene"
retain the distinction between action and information Commander. This is interpreted as meaning that his
decisions. (AlV~ough these classes are also divided "loperating tempo" is forced to be high enough to
into "input" and "output" groups, no analysis of this encompass the total activity below him, which is -

dimension has yet been undertaken.) divided among several subordinates.

Using these data, which are based an the editinig and And finally, the qualitative differences between the
compilation of many observers' logs into one by the Newport data and that taken on WES may indicate that
game historian, similar analyses were carried out. introducing computer assistance into a command center
Two typical plots are shown in Figures 8 and 9, which will change the nature of the 'transactions" which
depict one six-hour period in the game Ait two levels one sees taking place. If true, this may have seri-
of command. CTF 70.1, the Battle Force Commander, and ous Implications for the design and organization of
70.X, one of his four limmediate subordinates. It .future command control systems.
should be noted that the basic time unit of "width"
used in these Figures is one minute rather than thot
second used for the WES data.

While the most striking thing about these data Is the
similarity of the plots to those obtained with the

.data taken during the WES war games, there are
several other interesting points.7

rirst, the activity seems to be peaked at the level
of the Battle Force co~mmander. While not displayed,
the plots of activity at the level of SEVENTH Fleet
Commnander show only about one,-sixth the number of
decisions per unit time that are evident at the Force
Commander level. And the Force Commander's subordi-
nate is operating at about half his tempo. However,
there are four subordinates, so the total activity is
higher at the lower level, as one would expect it to
be.

Second, the effective mean time between decisions
seems to be about two minutes, rather than the 15 to
20 seconds seen in the WES game. This, of course,
may b. an artifact of the coarser time increments
used in the Newport logs, as well as the less
tactical nature of the decisions being made.

And thirdly, the statistics on types of transactions
were exactly reversed from that seen at WES.
Two-thirds of the decisions involved information and
only one-third or less involved action. Whether this
was due to the lack of computer aids or to a more
realistic simulation of a command situation is not
clear. It is hopied that additior.al light can be shed
on this subject by obtaining some more data at the
War College, which has had a major computer
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taoupe Sid*9 Date$ Observer$ pages

Decision Cia;,.,'
ES - request EMCON status CE a order a change in EMiCON
FS a request Force status DF - deploy the Force
US a request status of a unit DUJ - deploy a unit
RI - request for an identity EE - en'gage enemy (or target)
SD - seek other data AO - all other decisions

Tifwe Tye. Notes Titme Time

------------------------------------------- ----------------------- ---------

Figure 1.
Data Form Used for WES Experiments.

COMMAND CENTER INTER-ACTIVITY TIMES

NO. DTG To TI T2 TYP T3 T4 Act T5 T6
-------- ------------------------------------------------------------ -- - ----- 0.
* 151598 a a 13 a
1 151933 33 33 33 2 a S AO, a a
2 152317 317 284 251 1 a 11 FS a a
3 152406 366 49 -235 2 333 333 AO 333 333
4 152432 3'2 26 -23 1 75 75 FS 75 75
5 152508 428 36 10 1 36 -39 FS 36 -39
6 152530 45 F 22 -14 2 84 -219 DU U a
7 152612 4'i2 42 20 1 64 28 SD a a
* 152735 575 83 41 1 83 19 us a is
9 1529807 607 32 -51 1 32 -51 SD 115 115

19 152854 654 47 15 1 47 15 US 79 79
11 152937 697 43 -4 2 247 163 AO 331 -2
12 153015 735 38 -5 2 38 -209 AO, 39 -293
13 153058 779 43 5 2 43 5 DF a a
14 153146 926 48 5 2 48 5 DF 48 49
15 153256. 896 70 22 2 70 22 AO 161 123
16 133323 923 27 -43 1 269 S FS 495 a

Figure 2.
Print-Out of Computed Time Intervals as Stored in Computer Data Files.
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105 Observations 95 Samples 12 Bins Width - 18
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Figure 4.
Distribution of Time Intervals Seen by Observer Lombardo.
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Input transactions Output transactions

Infa: A RN receive a report SR - send a report
Re receive a querm SO w send a querw

Actirns RD -receive a directive SD a send a directlyo
NT *receive tasking ST - send tasking

* Pcal 43 all other decisions --- J-E- - Jour-nalen-tri

Figure 7.0
Decision Taxonvomy Used for Newport data.

The distinction between directives and tasking is that directives leave the
method of imaplementation to the subordinate, while a tasking includes specific
detailed instructions. The JE category was used for remarks by the historian.

a is 23 38 4U 58

17 Obs**ervatieons14 apls12Bns Wdt
File CTeF701/eeeeeeeeee eee I Timeea e Int.-.eeeeT e 1 eee

I...I..e

179 Observations 179 Samples 12 Bins Width I %
File - CTF7U1/ 1 Act.tiape I Time int.- T 1

Figure 8.
Distribution of Time Intervals Observed in the

Command Center ofaSuodnt Battle Gorce Comm sander.
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AUTOMATED WAR GAMING AS A TECHNIQUE
FOP EXPLORING STRATEGIC COMMAND AND CONTROL ISSUES

Paul K. Davis, Peter J.E. Stan, and Bruce W. Bennett

the Rand Corporation
1700 Main Street

Santa Monica, Celifornia 90406

Su~mary II. Background 0

This paper describes a preliminary concept for The Rand Strategy Assessment Center (RSAC) is
exploring strategic command and control issues with the developing a new approach to strategic analysis that -.
automated war gaming of Rand's Strategy Assessment attempts to combine the contextual richness and
Center (RSAC). The concept fnatures: a top-down operational complexity of war gaming with the rigor and
functionally oriented approach relevant to the transparency of analytic modeling. On the one hand, we
Interests of civilian and military leaders; a are building a large-scale simulation model with the
"hierarchical and otherwise multilevel gaming structure; structure of a political-military war game. In this
"and heuristic rule-based models using a variety of simulation, models represent the various national
artificial intelligence techniques. The approach'will players, making decisions of both a political and
be sensitive to key features of war plans and control military nature. The simulation can be fully
procedures. It will make a start on reflecting such automated. On the other hand, much of the RSAC's work
phenomena as nonunitary decisionmaking, deception, and will be highly interactive with human teams playing
confusion. It will take into account some of the against computerized adversaries or changing
asymmetries distinguishing the U.S. and Soviet assumptions about such matters as combat outcomes to

3 see the strategic reaction of the automated.players.6
approaches to C I. Initial versions of the implemented At theg technicalelevel,°thehRsAC is extending
"concept should be useful and interesting but will be several modern techniques in artificial intelligence
relatively simple; with time, it should be possible to (A.I.) as well as using more standard modeling and
evolve gracefully and use some of the detailed models anslysis techniques.[1,2J We shall not discuss the

available on pieces of the overall C I problem. Even techniques here. Instead, let it suffice to say that:
the early work, however, will represent a major break (1) we make extensive use of heuristic rule-based

3 modeling in an English-like prograsming language; (2)
with past strategic analysis in which C I isrues have that our decision models use such devices as pattern o
been largely ignored but for limited treatment of matching and search (with lookahaads accounting for
comm~unicat ions. likely opponent behavior); and, very importantly, (3)

"I. Introduction that contact with military realism is achieved in part
by relating a (greatly extended) version of A.I.

This paper describes a concept for using the eripts to analytic constructs akin to war plans.[1-31

-eerging technique of automated war gaming[li to From the viewpoint of A.I. research our effort is
Sexplore problems of strategic coemiand, control, notable because it is a rare application to realistic

communications, intelligence, and warning (abbreviated high-level military issues and because the
3 application's scope has caesed us to develop concepts

here as C I or as "command and control"). The concern for maneaing complexity in rule-based models that
hire is largely with the architecture of an approach should have more general value.[4.
rather thaa with details, many of which remain to be Figure 1 provides an overview of the RSAC system .....

worked out. Formal architecture is essential because emphaslting its hierarchical structure, something that
we seek an appro4ch that will bi broad and useful in vill prove im-ortantin treating C3 I. The first colu-n
its rarliest manifestations and that can evolve shwws the nominal mcve treatin C the overall gme.lm

smoothly over time to address a substantis" traction of The automated playlrs arc: (I) Red Agent reprall mting

the strategic coatmand-and-control issu~s oi. principal The Suovitet Union; s (2 e: (1)Re Agent represe ntingthSthe Soviet Union; (2*1 Slue Agent representing the" t::i

concern to national leaders. These include: Un~ted States; (3) Scenario Agent representing to first
continuity of government; timely command decisions ordtr ats (3) er Au entres resentigtfrs
involving both intercontinental and theAter-nuclear orealnosprorctursso cuty--country basis; and (4) Force Agent. The latter model
forces; continuing control over those forces; and is not really a player--rather, it keeps track of
prosecution of conflict (which, depending on forces worldwide and computes the results of battle and
circumstances, might call for decisive military action, other military operations such as movement. Its
controlled escalation, or de-escalation). In future individual submodels are typically simple and
work we plan to go beyond the current paper's empiasis agkregated, but because of the simulation's breadth and
on strategic nuclear weapons and to extend theonitetureocover strategicnulearwe n an pexted te othe requirements to interrelate phenomena across
conflict generallyt theaters, force types, and levels of conflict, Force

conflic ger'sltly e iAgent is quite coamrlicated overall. There is alto
The paper's outline is as follows: first, we antermdloae Sse".oior hchgiesgm

describe succinctly the principal features of the RSAC another mKodel calied System Monitor, which guides game .
dutomated gaming system; we then discuss our view of development by scheduling moves and managing interfaces

u with automated recordkeeping, displays, and humans.

what the strategic C
3
I problem really is--or should be The second column provides a closer view of what

considered to be in our work. Finally, we describe the happens in a single major-agent (Red or Blue) move.
philosophy of our approach and sketch out our intended
plan for implementing it.

10

V • -



coordinated. Finally. the lost column expands upon
-- . this by suggesting some of the many steps required to .

~ ~ define theater-strategy r-omponents that would be
decided (or at least reviewed) at the XCL. These would- ~ ~ i include: (1) consistency of actions with overall ;.:... .

- escalation guidance and objectives; (2) cross-theatcr
I coordination; and (3) resource allocation across

-- theaters

- Given this quick overview of USAC system
I architecture, let us note soan particular items . .

relevant to what follows:

o Variable behavior patterns. The behavior
patterns of Red, Blue, and Scenario Agents are
variable to reflect fundamental uncertainties

6 -about the true patterns to be expected.
S-Hence, we speak of alternative "Ivans,"

"Sams," and third-country "temperaments." ..
0 P-rametric force models. Similarly, Force

Agent's component models are highly parametric
Fig. !-A Hierarchical View of RSAC Automated War Gaming with the parameters chosen for strategic-

level analysis (e.g., a few simple equations
that calculate bomber prelaunch survivability

The move. begins with t'le agent assessing his success rather than a complex model considering
with a previously chosen plan. If all is going well, details su,;h as the propulsior characteristics -

he merely continues on that plan--which is represented of a Soviet SLBD that might be used to attack
in code by RSAC extensions of A.I. scripts.(2] All bomber bases).
plans (or scripts) have bounds, however, and if any of o Use of scripts. The decision models do not
the bounds have been broken (e.g., by excessive generally extend below important operational-
attrition or delay, or by the opponent's escalation), level issues. Instead, the Agents choose
then the Agent must reconsider.* This process begins among discrete war plans in the form of
with a rule set associated with functions of the scripts, each of which contains a number of
national command level (NCL). The NCL Lhooses a microscopic (and sometimes arbitrar,) action
tentative and incomplete war plan to be filled out and instructicns (which may contain sloti for..
tested by the area command level (ACL), which parameters to be filled in by some A6.L or
corresponds loosely with the functions of area Force-Agent subroutine at the appropriate
comanders such as U.S. CINCs or Soviet TVD commanders. time).
The plan testing includes a lookahead implemented o Unmodelable Phenomena. RSAC games allow
through the tactical control level (TCL). which certain phenomena to occur by flat if the
controls the interfaces with Force Agent and (together analyst so chooses--e.g., in some fraction of
with Force Agent's submodels) determines many of the game runs the analyst may want to have riots
detailed decisions about orders of ba..tle, allocation occur in Poland if certain other events occur.
of resources, etc. (decisions that should not be Although the origin and natur, of those riots

highlighted in a strategic level game). The Iookahead are not simulated, Red's rules may be
is a game within a game using the agent's assumptions sensitive to whether -he riots occux. The
about other players' actions and the likely results of riot flag is, of course, a surrogate for whole ,
combat. If the plan passes the test, it is then classes of important real-world events ...

implemented, again through the TCL level. Otherwise, contributing to fog-of-wer effects (and
the ACL may adjust the plan and try again, or report escalation).* Such devices are familiar in
back to the NCL that some strategic-level decisions manual gaming but may seem unnatural to
must be changed.** traditional modelers.

Continuing to unpeel the onion, the third column
provides more detail on what happens in the NCL. The Finally, let us summarize the RSAC system's
notable feature here is the process model guiding the essential elements, distinguishing between variables,
structure of rule sets. In practice, we must rigidly hard-wired items, etc. This is actually not so simple
define the permitted forms of escalation guidance, because the RSAC system is designed Cor flexibility
objectives, ,u,-..;Lrantegies, and then write unambiguous with a variety of users who have different. notions
rules leading from game observables (e.g., combatants, about what should be hard-wired. However, Table 1 -

location of conflict, and status of forces) to unique shows an illustrative breakdown appropriate for an
permitted formi. We shall not d4

icuss such matters application comparing nuclear-employment concepts in a
here even though they are consuming a major amoun.t oi range of scenarios. Although only illustrative, it %
effort and time. demonstrates that there are many pieces to the overall

The fourth column expands upon the Choose Strategy system--all of which must bm considered when attempting
process by noting that strategies must be chosen for to treat command and control.
each of the s-veral military theaters, including the
intercontinental and space theaters, and then 3

III. Defining the Stratexic C3 I Problem S
* The techniques for building such plans and 3

scripts are under development by William Jones, Norman Before deciding on an approach to the C I problem

Shapiro, and Richard Wise. we must first know what it is. One way to define

• The sophisticated reader will recognize that strategic CI is to list the ingredients of a C
3 1

Fig. 1 is ax idealization with imperfect fidelity to the syteI: (1) decisionmaking bodies and their procedures;

actual computer programs. In the code, distinctions (b) command centers to integrate information for the

among NCL, ACL, TCL, and decision rules in Force Agent decisionmakers; (3) control procedures to assure that

are sometimes fuzzy and the functions alluded to in the _

boxes of Fig. 1 are sometimes accomplished by rules *See Refs. 5 and 6 for the RSAC's conceptual
distributed throughout the program.' approach to escalation modeling.
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Table 1 words, will the separate conmmands (CINCs and
Soviet TVD commanders) be taking what they

ELEMENTS OF THE RSAC SYSTEM AS VIEWED WHEN ASSESSING regard as standard mias'ires that night on the

ALTERAATIVE STRATEGIES one hand raise the likelihood of escalation or
on the other hand fail adequately to

Wised F id Variable Principal anticipate the requirements of nuclear-
"Structure Characteristics(&] Characteristics Variables conflict or make nuclear strikes more

S_ _ _ _ _ _ _ -lucrative? (Examples: ASW operations,
o Game structure o War plans/ o Sa", Ivans. 0 Imployment threatening SSBNs or dispersal of nuclear ,

built around Scripts national stratesies. weapons in conventional conflict, or--on the
two (not N) tmeNerdmhnts other end--rassing of forces to achieve
primary players improved force ratios in conventional

o Rules for u Force models o initiating operations.)
determining Scenario 5. What operational constraints narrow the UCA's
move sequence o Individual"scenario- employment options (e.g., concerns for SSBN

Agent rules vulnerability, weapon range, retargeting
, sequence of o Some key inflexibility, option purity, limitations in

some NCL parameters
decisions and rules is assessment capability)? What doctrinal

Force, constraints similarly nrrrow his optiont
o Treatnant of Scenario, a (e.g., failure to train crews for massive

comnad levels Scripts retargeting)?

[l& Is other applications these would be considered variable. 6. What Soviet actions should we anticipate early
in conflict by virtue of Soviet doctrine's
emphasis on preparing for the nuclear phase? -

decisions will be implemented if transmitted; (4) How should we prepare to observe, understand,

intelligence systems to provide strategic and tactical protect against, and react to such measures?

warning of attacks and other information on enemy 7. What if we lose some or all communications
forces; and (5) communications co provide information (one-way or two-way) to the ICBMs, SSBNs,

on one's own forces, to permit transmission of bombers, and/or CINCs...? Could we lose the
decisions, and to permit report-back on the results of capability for assured retaliation, limited
execution responses,...? Is the EMP threat real and

potentially devastating? What if we lose
It is important to remind ourselves that 3I does communications to the Soviets? Will that

not depend on physical commiunication systems alone--
it involves analysis by the NCA and his staff, as well general nuclear war? sotfunerae
as lower command levels, decisionmaking procedures, g. What if we lose ear? nin satellites
doctrine (which is a key element in control ind from antisatellite attacks, sabotage ons
planning), and many other items. Indeed, the breadth the ground, system failures, or unknown
and complexity of command and control are such that reasons?
definitions and f:-,w diagrams are often too abstract to 9. Assumir.- tho potential KCA desire to make
communicate what the down-to-earth problems people limited responses to nuclear attacks, what
worry about (or should worry about) actually are. It capabilities at what level will be necessary
is therefore useful to list some of those illustrative to make appropriate limited responses
coneerns, drawing on the public literature as well as possible--not only at the outset of conflict,
our own knowledge.* In listing these questions, we but as a function of time thereafter?
have not attempted to order them by their actual or 10. What if the results of initial conflict are
perceived importance. Further, although these sharply different from those anticipated--
questions have caught the common fancy as "important" because of system failures, surpriso. tactics,

examples of potential C
3 

I failures, we cannot exclude or whatever? What capabilities are needed to
the poseibility that prospective problems are more permit at least modest replanning?
"imagined than real in some cases. 11. What if communications are adequate initially

but rapidly degrading? What are the effects
Illustrative Questiors on crisis stability and future ability to

prosecute the conflict?
I. What if the Soviets attack Washington on 12. To what extent is a counterforce war made

Inauguration Day? Would we be "decapitated?" infeasible by fragility in the command and
What does "decapitation" mean on an control system? What are the implications of
operational level? one or both sides having command and control

2. What if the Secretary of EJucati',n becomes the inadequate to prosecute an extended nonflict?*
National Command Authority (NCA)? Will he 13. To what extent does the nature of actual war
know enough to make timely strategic plans circumscribe the feasibility of limiting
decisions? the scope of nuclear war, once it begins? Are

3. What mre the implications of delegation, .- they so inflexible as to preclude contiolled
oredelegation for contingencies, and responses or are they in fact adequately 9
u.ailateral lower-level assumption of flexible given the limited number of plausible
authority? options, the relative predictability of

4. What are the implications of normal certain aspects of strategic nuclear war, and
decentralization of authorit) for control of the difficulty or cost of achieving enduring
events relevant to escalation? In other command and control to support more fine-

- - ______ _ tuned responses?
• The unclassified literature on strategic C

3 I

varies widely in accuracy and quality. For an * Interestingly enough, it is sometimes argued that
apocalyptic and influential essay, see Ref. 7; for an 3
interesting (but not always accurate) survey, see Ref. enauring C I capability would be destabilizing, a view

8; for guarded discussion by knowledgeable experts, see that would shock most defense professionals. See, for

Ref. 9. See also Refs. 10 and 14. example, Ref. 10.
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The list reinforces the co.clusion that control authority. Moreov ir, it should
r reflect hierarchical phenomena.*dressing strategic C31" means addressing an 4. Even our early efforts to reflect command and

'ruous range of issues involving everything from control should be useful and realistic. It is

indard operating procedures at the operational level better to reflect som,: of the real command and
the implications of satellite vulnerability. Upon a control issues early than to treat command and
nt's reflection it is also evident that the answers control comprehensively for a "toy problem" of an

the questions posed depend upon such diverse no direct value.
-iables as: (I) nature of the superpower leaderships S. However, the apptoach 'should be evolutionary .

- conflict; (2) succession and devolution and should allow linkup to some of the
rangeecnts; (3) locations and levels of conflict; (4) detailed work being conducted within the
Lot history (initiating scenarios); (5) status of defense community on such matters as
.ces by type and theater; (6) range, quality, and communications connectivity.
exibility of preplanned options; (7) the enemy's 6. Although an evolutionary approach is
erall strategy; (8) technical issues such as the appropriate, it should be broad-based from the
rvivability of many systems (or functions); and (9) outset--touching ins!ghtfully upon both U.S.&

constitution capability for each czmponent of C 1W. and Soviet command, control, communications,
shall begin to address them in Sec. IV. intelligence, and warning rather than dwelling

exclusively on, for example,. US.' capability
IV. Conceptual Architecture for an Approach to communicate an Emergency Action Message.

7. The approach must permit the analyst (or game

sic Considerations Governing Approach director when human teams are involved) to
introduce phenomena representativa of theo .Log

Section III demonstrates that handline C3 I within of war--phenomena such as may arise from

e structure of an ordinary odelin approach is causes as diverse as unconventional warfare, .

mply not feasible--too many of the issues are less f•jkes of nature, or catastrophic weapon-

antitative and naturally analytic than operational or system failure.'* *

havioral, and it would be fruitless to try reducing
.e problem at hand to a very smell number of simple Elemnts of Architecture. To move from

triables. By contrast, the emerging capabilities of requirements to an architecture we must first think

tomated war gaming will be an ideal vehicle for about what wot.ld constitute an architecture. How would

ploring many of the issues systematically. Indeed, we know if '.s had one? Remember here that we are not

icognition that gamirg was probably essential in dealing merely with the design of a communications -.

-eating effects such as command and control underlay -system. Rater, we 4,re dealing with an approach to the

Ich of tho initial government interest in the RSAC design and application of an interactive war-game-.
l The RSAC project is now based simulation. Upon reflection, and upon looking.

that making this idea a reality is a hegh along back at Table 1, which itemized the elements of the
tsyn. RSAC automated gaming system, it seems we must provide

The most important premise governing our approach four different items:

2 strategic command and control is that such issues
iould be reflected in the very fabric of the RSAC 0 A suitable structure for the simulation (one 0

3 that will provide the appropriate perspective
fatem--to view C I as merely one more effect for which on a multifdceted problem). . -
program "module" needs to be developed would be to o Variables (and corresponding data structures)

Isunderstand utterly the nature of the problem. suitable for reflecting command-and-control
adeed, it would be c.oaer to the mark were we to say factors simply and transparently in rules and
hat the various And sundry RSAC models should be algorlims.
obedded within the febric of a command-and-control algorit-ms.|
onstruct than vice versa. * The hierarchical principle of complex systems is

All this implies that we need a conceptual what underlies the frequently mentioned analogy between
rchitecture for our approich rather than a mere grab living systems and command and control. Each level of a . . --
ag of physical models and artificial intelligence hierarchy has a recognizable separate existence and a
echniquea. We shall now sketch out what we see as %set of internal processes. It communicates up and down
.esign requirements for ousr effort and then provide the the hierarchy, but the communications--however ""
utline of our intended approach. important--represent only a small fraction of the

activities and are of little concern to most components " . . -
Deui Requirenent_.. Upon reviewing the state of of that level. Moreover, communications can be delayed,

he art in strategic z-nalysis, the major strategic imperfect, inappropriate, misunderstood, etc. --..... 7--ý--
.ssues of the day, as we see them, the nature of the Manifestations of hierarchical effects are familiar to
LSAC charter from DoD,[Il and the conclusions of some students of organizational theory, large business and
)a"t DoD work,1121 we have developed the following government operations, biologists, and certain
irinciples as guidance: philosophers such as Arthur Koostler who sea

hierarchical principles as having broad applicability.
1. As mentioned above, the command-and-control We should note th:t it is one thing to build nested

issue should be reflected throughout the multilevel models, which are by no means unusual, and
fabric of the simulation and not merely in quite another to reflect hierarchical principles
some "module." adequately.

2. By virtue of our strategy-level focus, the adqteyappyviroucoh sould btopy-d evenr otus, than botto We wish to achieve here some important features
approach should be top-down rather than bottom of manual gaming in which the Control Team can force

up. This implies we should be focusing on C3 I teams to focus on events that are systematically left
functions rather than individual systems; out of typical model-generated scenarios. For example,
moreover, it means that the key game variables a Control Team caen decree to the Blue Team that its
and displays should be aggregated and in a early-warning capability h.s vanished, and thereby- force •
form natural to strategic-level discussion, the Blue Team to think out what it would do in such. a ;-.-- .

3. The character of the system must account for situation. The Control Team does nqt have to explain in
the existence of multiple levels, and detail how the catastrophe occurred (although good game '"""'"''
locations within levels, of command and practice would entail a plausible explanation). See

Ref. 3. ;" "
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0 Algorithms and rules fur manipulating Table 2
variables sad data structures to model desired
effects. ORGANIZING DATA FOR SI MLIFIED RULE-WRITING

o A management roadmap for assuring that C
3 I SENSITIVE TO COMMAND AND CONTROL

issues are introduced consistently throughout .- "_._,_"_

the complex RSAC system. 0 - C -S n
stare of state of

Wanc StatM of MCA Support state of
We shall now discuss our intended approach and A System Command and * (Functional C. ACA

touch upon each uf these items in turn. Observab.es Control Capabilities) Capability

Outline of a Conceptual Approach - (unstructurOd data on: status of forces and nations' war
plans (scripts) being implemonted. attrition rates, rates

Simulation Structure. We shall not discuss the ot movement,....

issue of simulation structure in much detail here
because it should be reasonably cleai from Fig. 1 and C(t) - (CM C2 1 C3 . I0 W)

the attendant discussion that we anticipated most of Cl(t) a (Mature of W.A. Extat of Dlegation; Exiunt
the structural issues from early-on in the -:-?ram. In M feof Contingency ?redelegation; Nature of NCA
particular, the RSAC's basic system des-6n is weil- Staff; Degree of Information haturation)
suited to treatment of hierarchical and otherwise C (t) - (tower-Level Capability to Respond (to
multilevel effects; moreover, it is flexible, modular, higher-lewel orders), oas~r-Level Willingness
and designed with the expectation of evolutionary to Respond (to biaher-lavel corsands))

development from simple rule-based models to more C3(t) * (Counictions (by sographic reaion) to: ICBMS,

sophisticated models asing results of detailed work on SSSNs; Sombers; SLC5 launch platforms; Satellites;

such problems. Although it will be some time before we ASAT systems; Other Strategic Defensive Forces

make extensive use of the capability, the system design = (SIts, AlSK, interceptors); Nonstretegic CINCS)

also permits us to maintain separate data bases for 1(t) (Intelligence on: Nature of encey NCA;
Nature of money NCA support; Enemy ICBMs, SSINs,

Red, Blue, and "Real World." That is, our data SIC launch platform. bombers, satellites, ASAT

structures permit us to have Red, Blue, and Force Agent system, and Other Strategic Defensive Forces (SAs"s.
"AiMs, interceptors; and aeney forces in theaters) " '

to see different data bases on, for example, the status W(t) m (Warnin8 of attack by: hllistic
"of Blue's forces. Handling such effects is painful for W i) silsa ; ai r o reathera ) by: ......ti

the analyst but will be essential for looking into
matters such as deception and the fog of war. 3(t) m (Ability o.f the MCA to Obtnis Finished Aesessments of: .

status of his forces, force operatiene, and alliances;
status of the unemy MCA, MCA support, forces, and alli-

Variables and Data Structures. Discussions of ances. Ability of the XCA support staff to lSOe,

rule-based models sometimes seem to suggest that rule Develop, end Evaluate Options, both before end after

writing is easy and that structure is unnecessary-- executlon. Ability of the KA's forces to Execute

all that is necessary is to find an "expert." In fact, Options.)

however, there are many instances in which experts able NMt) (PeA ability to: Assess Option Feasibiity; Modify . .-. -

to provide a complete and incisive sot of rules simply or Originate Options; Coopar* and Choose Amon Options;

do not exist. In that case, which general)y applies to and Communicate the Chosen Option.)

command-and-control issues, it is necessary for

analysts to do a great deal of background work to help Transformations between these vectors should,'''¾.

experts think clearly and cover all the bases.[4] This be thought of as transforming raw data on

implies anticipating (to the extent possibin) what the system observables into forms more convenient

experts will eventually find to be the most natural way for rule writing. . '.'

to express rules simply and understandably from a o Each of the state-vector components and their . '. - -

strategic-level perspective. That is, we must time trende should be definable, for our

anticipate the appropriate variables, related data purposes, in highly qualitative terms. For :. 0

structures, and logic flows. example, we may characterize the quality of

Analyt'cally, a major problem he.-e is that the the first component of C3 , cosunications to..

"natural variables" for those building the individual ICBMs in a given geographic region, as: poor,

pieces of the RSAC simulation ire often not the natural moderate, or good.

variables in which to express particular rules. For a We would expect to write nearly all rules

example, the RSAC has a world data base with involving the coesand-and-control influence on

information on worldwide forces, national orientations, option selection in terms of the vector N (and '

etc. The data are collected initially in forms driven C1 , which dete'mines the major agent's .

by the models that track locations and status of

individual forces and the )like. However, this form is charezter); other rules, however, (e.g., Force -7

too disaggregated and disorganized relative to what we Agent rules on option execution) may depend on

need either to write simple decision rules involving S, C, or--in rare instances--information found ;.

c.e.and and control, -r to write simple rules or models only in the world data base.

describing conmand-and-control effects in the execution a In defining the state vectors, their

of options. components, and the values of their

With these considerations in mind, we AL. components, we must be cautious to maintain -

:-,!ntlv working out on a clq'ssified basis the details resolution distinguishing among the following,

-of an epproaca, outli.n"d in Tatle 2. Swoe of the basic -en in early work:
not•ons here aia as follows:

S-. •.~Thaters: intercontinental, ?.i•
0 It is useful to construct three time-dependent space, others (Europe, SWAl...),ý

state vectors in addition to 0, which and simultaneous multitheater ... ;.
characterizes the "world data base" as it is operations '"

evolving in RSAC work. The three vectors, C -- Strategic Forces: ICBMs, SLBMs,

(with subvectors for the C 3" and W components bombers, SLCMs, Space Forces,

of C3  and ASAT Forces
1), and S, and N, pertain to the states Time: crisis; extreme crisis and '..'.-

of C
3

1, functional support for the NCA, and possible theater war; period of - ---

NCA capabilities, respectively. U.S. first strike; period of
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Soviet first strike; period of retargeting. No capability to
immediate U.S. response, if any; change theater war plans.
initial aftermath; and extended Low-Medium: Preplanned options of classes X
aftermath (see Fig. 2, but note and Y with retar-geting of ...
Also the posnibility cf more force elements A and B feasible
Lomplex stop-and-start wars) (where A and B are the force
Option Class: e.g., limited elements for which retargeting
versus massive counterforce is most plausible). No L.

options with modest or major capability to change theater.0
coordi-nation problems war plans from the NrA lev,!l.
(including theater missions for High-iedium: As abo,,e, except full retar-
strategiz forces) limited and geting across force types
massive countervalue options, within preplanned option.. '-.
and mixed options, in each case High: Full nominal capabilitieb as of
executed as a first-strike, some future date, including in
Launch Under Attack, Pronpt particular the ability to
secord-strike, Delayed second- retarget against neily acquired 9
strike, or Follow-on strikc. targets in ad hoc options.
Employment Conceppt: distinctions vah-es t
among options calling for the These definitions allow a few simple " " to
same results to be achieved with cover a number of issues. We would also need
different missions for the separately to characterize the components in terms of
individual force typ.s (e.g., timeliness of decision (e.g., normal or slow).
strikilng the same targets with Obviously, he approach involves an articlp of

bombers as opposed to ICBls). faith to the effect that the strategic command-and-

Clams of Effect: effects on control pioblem car, be reduced to describing

ability to choose, quality of capabilities and phenomcana in a large but highly finite
choice, and speed of choice, number of crudely defined discrete states, preferably

states that can be summa- ized briefly in intuitive

Strategic Warning feU.S. terms. Considering that most strategic nuclaar
-- analysis implicitly assui,,es the state of perfect

Tactical WarningforU.S. command and control (except for zero strategic
warning), we need hardly apologize for an approach that
will distinguish among tens (or perhaps hundreds) of

AltacksonSpaceSystem, s states. How much disaggregation will be necessary

remains to be seen.
Launch urde antack Raplanning. Follow-o.n Strikes. etc.

Roadmap to lnltraticn. Assuming that the

A TIME structure we have outlined provides an appropriate view
Crisis Extreme Soviet Intse,,daiat Initial Extended of the problem, and that its states are defined for

cnris/ first U.S. reaction fatrniath aftermath rule writing and nolel building by using the natural
th"e:,wwa strike variables of the command-and-control problem, the neAt .

its unch) challenge is to manage the implementation.

Fig. 2-Illustrative Time Periods and Events Unfortunately, this fs inaerently difficult because, as

o The NCA's abilii'y to perform the functions repeatedly stated, C1I permeates everything and must
listed in N(t) will depend strongly on the therefore affect tie work of numerous people working on
ltyed in Nt)wills udpr cnsteratony different parts of the RSAC project. There are at
Although options ntheoretially be indexed least three aspects to managing the work in such a
by all components of the p-eceding bullet, we case: (1) rule writers and model builders must havethus far believe that Time and Option Class checklists of items to consider, thercby reducing the
are the most important characteristics for likelihood that Red will write rules sensitive to some

hNCA's ability to command and control issue that Rlue will ignore, exceptassess option feasibilityh for example, should in those cases where underlying strategic asymmetries
assunderssooption feas ity fr t examplchol dictate valia differez;tial sensitivities; (2) there
be understood to be with reipact to each must be a mechanism of integration in which the various -
Option Class component witFio each Tio are contributors systematically read each other's material,
compon~ent. For each such combination we are

now in tie :,rocess of defining High, Medium, compire notes, and look for incompatibility; and (3) 5
there must be foimar "walkthroughs" of the overall

and Low labels for the components of N~t). simulation on every co'mmand and conttrol issue expected
to be important.Even further distinctions will clearly be necessary t eiprat

W-• cannot disc~uss these matters in much morewhen we begin to delve more into theater-level issues, detail :e.. but we can point out a few items ofEv tenf uher distinctis wllead c ar bnes
but the above list is already intimidating, interest. Fir e.:nmple, upon reflection we find it

Although the many distinctions iLenized above may uaeiul to distinguish clearly between comand-aado

reem to imply that aggregation cain't work, in fact control effects on decisions, and command-and-control .. ""zhere appear to be many possible simplifications. For effects -n force operations. Figure 3 makes thisexample, in characterizing the capability of the NCA to distinction and points out that all of the RSAC agents
develop new options dirring th, "Period of Immediate are affected. Note that:
Response," we. might use Low, Low-Mjedium, Ihgh-Medium,
and High as the principal descriptors with these o The state of strategic command and control *"
definitions: (and the projected state!) must affect Red and "

Blue decision rules by: (a) affecting Red or
Low: No capability except for execu- Blue character, warfighting ability, and

inona of preplXnnbed options efficiency; (b) limiting Red or Blue options;
in class x (x to be defined in and (c) shading the perceived attractiveness
terms consistent with the war of alternative available options. Similarly, -.
plans/scripts available). No Scenario Agent's decision rules must be

.• .. . . - . ,,
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Optional war plans Naeon-by-netion rules - D-.be,
S!-affected by and aensitive to superpower s Woring1 with with ne,

affecting C'l character oespecially asoi W weelat

State of NCA):: °''A A A
AgnFgn Agent Agent AatAAA

Rulesonoptlonaeiection Algorithmssnd rules obtuse se Z . se1 . . se2 2

basedlargelyonoutes describingresultsof
vectorl and chersatht option execution as a I a
of NCA function of command I

and control variables I.
,., Fig. 3-Command and Control Effects on

' Blue Move and Results Thereof

Fig. 4-A Simplified Logic Tree for Red's Assessment of
sensitive to the nature of the superptacers' Blue's Ability to Launch Under Attack
national command authorities and the overall
effectiveness of those superpowers.

o The Force Agent must reflect cotmand-and- 1. Create Red war plan components Lhat would, it

control effects on force operations (and of successful, destroy Blue's warning satellites

projections thereof) by m-ans of: (a) delays and radars.

and related mismatches between decisions and 2. Build Force Agent models to estimate the

current world states; (b) errors such as those effectiveness of such Red options under a

caused by poor intelligence or communications; variety of circumstances (e.g., the status of
c as "Red's antisatellite systems and space-tracking'."(c) degraded capabilities such as loss of network, the number and vulnerability of U.S.

certain types of warning or intelligence; and satellites, the locations of Red's SSBNs
r ~~~~(d) coordination problems,.aelts h oatoso e' S~• •, "- d) cordnaton poblmscapable of attacking U.S. warning radars).

0 The analytic war plans/scripts must reflect to capBle oackin u.s waning Radas
some degree the partially independent 3. Build Red decision rules sensitive to Red's
"operations of individual theater commanders assessment of Blue's WA capability (e.g.,

S.and the potentially parochial decision rules ruler affecting Red's willingxiess to launch a

governing those operations.* They should first strike or rules affecting the size and", -. nature of a first strike; also, rules relatinig
reflect doctrinal behavior at the operational
level except where there are good reasons to Red's desire to prevent U.S. LUA to other Red

assume otherwise.** actions that would provide the United States

0 The analyst using the RSAC system must be able with strategic warning).
to insert "fog-of-war" effects and other 4. Build Red rules assessing Blue's LUA
related phenomena easily, something that has capability (as in Fig. 4) and relating the
implications for System Monitor in particular, items in the figure to the war plan components

pbut also for the other Agents (i.e., ther mentioned in (1) and Blue's probable response
must be variables created to serve as to other Red war plan components as mentioned

surrogates for the effects in question; the in (5).
variables must be represented in all of the S. Build Blue rules sensitive to indication that
separate agents). - warning satellites are under attack (e.g., go

.. . . . .... -- on highest alert) and rules establishing

All of this is rather abstract, so it is useful to whether Blue would actually try to launch
provide aL least a partial image of what is involved in under attack under some circumstances (a
implementing the concept. Thus, let us discuss what function of policy and capabilities, which

- might be involved in reflecting just one particular might be quite different from those assumed by

issue, Red's assessment of Blue's LUA capability. Such the Soviet Union, whose strategic doctrine has

"an assessment might be important in Red's detailed stressed LUA for years).
attack planning if the implications of a U.S. LUA were
major. Figure 4 suggests a somewhat oversimplified Although this Is only a narrative sketch, it is

"' logic, sufficient to demonstrate once again that incorporating
To implement this logic in the RSAC system one command-and-control effects is an inherently complex"would have to do the following: business .demanding that attention be paid to details of

.. w h tscenario, strategy, the two-sided nature of the game,

* Ultimately, we hope to reflect independent etc.'*" Where, then, do we stand at this point in our
* operations by commanders at levels lower than the hereothen , do we stan at t ontuin or

0 theater. In the relative near term, however, we development program? Is this all conceptual, or are we
will omit such considerations, actually implementing the ideas? At the moment, we are

"** This has management implications because within a few months of automating the most recent
Sit suggests that we should invest in having separate version of the basic REAC system, having conductedit sugsstasesol neti aigeaao emiautomated experiments last summer. J131 Once the
teams develop the war plans for the individualsma
theaters rather than building the plans from a basic system is operational, we plan to incorporate
purely top-down perspective that would tend to make selected command-and-control effects on a simplified
the analytic plans used in the computer model come basis using heuristic rules tied to grossly defined

"o out far more coordinated and mutually reinforcing world states (e.g., have the Soviets already attacked

than is realistic. Unfortunately, developing such warning satellites?). We then expect to implement a

5eparate plans is manpower and expert int, nsive, more ambitious but still first-generation of the

especially because of the effort required to train overall architecture, probably in November or December,
teams of analysts. 1983. Finally, we expect to build more sophistication

into the system over the period of several years--
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including explicit tie-ins to tj'e results of detailed f-

* models such as those used to estimate connectivity to
N bombers at a function of weapon lay-down and scenario.

We plan to use structured human gaming as a source of
insight and rules. Our expectation is that
applications will be posible early next year, well
before we have much sophistication--primarily because a
major contribution of the effort will be a war game
framework requiring consistency from move to move and
requiring the human or automated players to take first-

order C 3 1 effects into account when developing their
overall strategies.

%Re ferences

Davis, Paul K., and James A. Winnefeld, The Rand
Strateg Assessment Center: An Overview and
Interim Conclusions About Potential Utiit and

* ~Development Options, The Rand Corporation,
* R-2945-DNA, harch 1983.

-* 2. Steeb, Randall, and James Gillogly, Design for an
Advanced Red Agent for the Rend Strategy Assessment
Center, The Rand Corporation, R-2977-DNA.

* May 1983.
3. Davis, Paul K., Concepts for Improving the Military

Content of Automated War Games, The Rand_
Corporation, P-6830, November 1982.

4. Davis, Paul K., "Concepts for Managing Complexity
* in Fealistic Applications of Artificial

Intelligence to Problems of Strategy and
Operations," The Rand Corporation, forthcoming.

I, 5. G!asax, Charles, and Paul K. Davis, Treatment of
* ~Escalation in the Rand Strategy Assessment Center,

The Rand Corporation. N-1969-DNA, March 1983.
6. Stan, Peter, and Paul K. Davis, "Escalation in

* ~Automatedt War Games," The Rand Corporation.
* forthcoming.

7. Steinhruner, John D., "Nuclear Decapitation,"
Forei. Policy 45, Winter 1981-82.

8. Balal, Desmond, wtan Nuclear War Be Controlled?"
Adelphi Papers 169, International Institute for

* Strategic Studies, 1981.
* 9. MITRE Corperation, National Security Issues 1981

1 7 ymposium, MITRE Document M82-30, 1982 (reporting
-. ot. a symposium held by the Air Force Electronic

Systems Division and MITE during October 13-14,
1981 on the subject of "Strategic Nuclear Policy,

3/

No. 4, Winter 1982.
11. Marshall, Andrew, "A Program to Improve Analytic

SmodMethods Related to Strategic Forces," Policy
* Sciences Vol 15, No. 1, November 1982. See also

oAppendix 1 fonf Ref. 1.
12. Harris, Donald, Andrew Marshall, Eugene Durbin, and

Fred Giessl1r, Final Report of the OSt Research on
b eMilitary Command Control, 1979, Office of the

.jDirector, Net Assessment, Department of Defense,
1979.

13. Winoefeld, James A., Illustrative Experiments with

.o7

an Interim Version of in Statg Assessment
Center, The Rand Corporation, N-1917-DNA, November
R-1982.

14. Van Creveld, Martin, Command, Unpublished report
for the Director of Net Assessment, Office of the
Secretary of Defense (n.d.).

17

i• Crportio, P-830,Novmber1982 "-



A COMPARISON OF TWO AIR DEFENSE

COMMAND AND CONTROL MODELS

Dr. John R. Dawdle Dr. Leslie C. Kramer

Mr. Robert F. Gandron Mr. Mark P. Merriman

ALPHATECH, INC.
Ill Middlesex Turnpike
Burlington, MA 0l8Oýý

(617) 273-3399

SECTION 1 objective (offense). For example, in air

INTRODCTIONdefense the problem is to detect threats and
INTRODCTIONassign weapons to shoot them down prior to

their carrying out their assigned attack.
)-rvr this paper we describes and comparvC The scarce resources in the air defense

two models of air defense systems which environment include the obvious ones such as
focus on the command and control Wo^23 .' fighter-interceptors (FIs) or surface-to-air
aspects of the air def ense mission. The missiles (SAMS). Other resources may be
models are both computer~-based more subtle, such as "attention slices" that
representations of how, through the radar operators must devote to penetrators
execution of CIV functior'a, a defensive to recognize their presence, Identify them,
force detects arid destroys an of fensive and generate reports f or subscquent
force of airborne penetrators. However the processing by the system.
two models are completely different in the
manner in which this engagement Is Systems characterized by competing
represented. The firnt model, called QUEB demands upon scarce resources, each of which
for9*queuing based, 'p"consists of a large set is occupied for a finite time while it is
of simultaneous equations derived using being used, are modeled mathematically
queuing theory which solve for the dynamic within the discipline of queuing theory C13.
steady-state conditions existing throughout We theref ore argue that a queuing-based
the system. The second model, called TADZ formulation of command and control is an
for~ltransiont air defense zone,ý*is a appropriate one. We shall illustrate such a
So-called event-stepped simulation of the formulation below.
air defense engagement.

A second aspect of command and control
We first describe an underlying that must be captured by any model Is that -

skeletal or conceptual approach to modeling C^2 systems are feedback (or "closed-loop,"
command and control; this skeletal approach or "cybernetic") systems. This is
is reflected in both QUEB and TADZ. We then illustrated in Fig. 2-1. The generic C^2
describe each model in turn. Finally, system consists of sensors which gather
comparisons are drawn between the two information, decision makers who act on this
approaches to modeling the same problem. information, and weapons systems which are

- Thecontibuton f ou wor isdirected on the basis of commands issued by
The ontibuton f ou wok is--- the decision makers. All this Is tied

two-fold. First, the underlying approach to together by a communications network of some
modeling C^2 processes we believe to be sort which passes the information around.
generic and applicable to other command and (In our view, some analysts mistakenly
control missions. Second, the illustration consider the communications network alone to
of the generic approach in terms of twobete'2sytm) Teytmiscod

specfic odes whch ave ctully eenloop because the sensors see what happens!
Implemented and run gives insight into the The foeeback naturv of the system is
spectrum of conclusions one can draw (using critical to its evaluation because the load
different sorts of models) about how command on the system is governed by the need to
and control contributes to thri achievement re-engage targets which are not successfully
of a military mission. destroyed the first time they are processed.

It is obvious, then, that models of C-2
SECTON 2systems must include models of the sensors,
SECTON 2decision makors, and weapons associated with

a mission, as well as a model of how they
21C^2 SKELETAL MODEL AND MODhaL ELEMENTS are tied together.'

21Basic Approach In our view, the appropriate measures
of effectiveness (MOEs) for characterizing

Command and control is, in some sense, C^2 relate to time, leakage, and resource
the "glue" tnat holds together a complex utilization. How long does it take to
collection of military hardware and people prosecute the average target? How many
trying to us* it for a purpose. To achi eve targets escape? How often are there no Flo
a military mission, the typical problem is available to engage known threats, or how
to apply scarce resources in a timely manner often are all radar operators busy, causing
to meet a thtreat (defense) or achieve an
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new targets to go undetected? Queuing under given conditions. Difficult tasks are
formulations deal precisely with these those requiring "intelligence" or "insight"
questions, as we shall show below. to carry out.

In our models to date, we have

2.2 C^2 Element Models represented only easy tasks, i.e., DMs are

represented as delays and algorithms. W..e

chave not yet considered model applications
Given the structure described abovet, the requiring modeling of cognitive processing

analyst must determine the degree of detail or "intelligent" behavior.
needed in the individual element models
inserted into the structure. Our objective INFORMATION NETWORK
in the work reported here was to include
enough detail to address the questions for The information network we have modeled
which the model was intended, yet as little to date is considered to be divided into a
detail as possible about sensors, decison surveillance side and an airspace control
makers (DMs),. and weapons. An explicit site, as shown in Fig 2-2. This division is
objective of the model design was to fo" conceptual clarity only; in reality,
maximize execution speed, and one means of surveillance side and control side
achieving this was to include only those installations in an actual air defense
model details actually needed. system may be physically colocated. Both

surveillance ('S-side*') and airspace centrol
SEN30RS ('C-side") processing is represented as a

The sthree-level hierarchy. SOs are the basic
Thersensors In our models are target detection and report generation

represented by single-look probabilities of units. These report to Sls, which are
detection. This parameter may be Influenced fusion centers, themselves reporting to a
by geography and relative sensor/target single S2 which carries out global data
location, e.g., in termn of terrain mas kingb usion for the air dyfense system. •Some
It may also be Influenced in some case by SOs may report directly to S2 if desired:..)
offensive action such as jamming. The On the control side, 'a single C2 divides
analyst using the model is able to target assignments among several Cls, which

implicitly describe detec':ion probability in further subdivide them among individual COs
terms of physical quantities such as radar which reprusent SAM or F1 units. There may
power and target cross section, which are or may not be cross-iinks from SOs to COs or
then passed through the radar equation to from Sls to Cis; the presence or absence of
determine detection probability. However such links results in effects which we wish
all of these physical parameters influence to study with our models, as we shall show
the C-2 computations through the one below.
probability number. -

In this section', we have described the
The only sensors we have modeled to generic features uf our approach to C^2

date are radars of various types, both modeling. We now describe how these are
ground based and airborne, reflected in the two specific models

constructed to date.'
WEAPONS

As with the sensors, we wished to SECTION 3 -

minimize detail in our weapons models.
Thus, we chose to represent weapons in terms QUEUING-BASED MODEL (CUES)
of one-on-one probability of kill. Other ! .

parameters associated with weapons in more In this section, we will describe the
detailed analyses of weapons effects, such features of the QUE3 model, its formulation,
as availability, for example, are "rolled and the computations carried out when it is
into" the single engagement kill executed. This model is documented more
probability. Multiple engagements of a completely in references (23-C43.
target by one or more defensive assets are
characterized by the appropriate chaining of 3.1 Model Features
one-on-one kill probabilities.

The air defense engagement modeled by
The number of weapons of a given type CUES consists of the interaction of a

and their gooG. aphic location are explicitly homogeneous threat with a mixed de+ense.
-epresented in the models; it is possible That is, the threat is assumed to consist of
for all weapons in a region to be "busy" a single type of penetrator, say "-52s or
prosecuting penetrators with the result that cruise missiles, while the defense is
subsequent penetrators pass through assumed to include both SAMs and FIs
unengaged. (assuming the model is used to represent a

US attack on the Soviet Union.) The threat
is assumed to traverse a number of discrete
penetration paths which are fixed a priori

We draw a distinction between decision but which are unknown to the defense.,.
making tasks which are "easy" and those that Similarly, the ground based defense
are "difficult." Easy tasks are those whose deployment is fixed throughout the 7

execution can be represented merely in te'rms engagement. (Airborne defense elements move
of a delay or in terms of an algorithm in a b. .e t. .
combination with a delay, the algorithmassignments to
specifyion which af severlay utcomesgoresuls targets.) The penetrator routes may bespecifying which of several outcomes results chosen by the model's user to avoid defense

assets if desired.
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The information flow represented is a "queuing facility" until either a server

that illustrated in Fig. 2-2. however the becomes free to attend to it or the customer

cross-links from SOs to COs and from Sis to gives up and leaves the module (in which

CIs are absent. Thus the information flow cafe it is said to "renege"). Thes2 terms

is assumed centralized in that all target and concepts become intuitively clear if the

reports pass throuah S2/C2. Message reader considers entering a fast-food
generation on the surveillance side is -estaurant seeking a meal.
probabilistic. representing non-perfect
single-look detection capability, however Queuing theory permits an analyst to

the detection model is a simple compute several statistics about the set-up

"cookie-cutter" approach. That is, each SO depicted in Fig. 3-I. Given statistics

is assjmed to "cover" a particular characterizing the arrival of customers,

geographic region associated with which is a statistics characterizing the time it takes

single probability of detection per look to process each one, and the number of

number. Radars can achieve a number of servers, the theory provides equations

looks governed by the penetrator speed, the describing the statistics of the waiting 0
radar sweep rate, and the penetrator route time that passes until a server is available

relative to the radar position. to process a customer, the statistics of
reneging (i.e , how often customers leave

* The control side represents several the module without being served), and the
types of threAt prosecution, depending on statistics of server utilization (i.e., how
whether the particular unit carrying out an often everyone is busy.) Examples of such

engagement is a SAM, a single FI, or a group equations are not given here due to space

of Fis (a "flight"). .s target assignments limitations; the interested reader should S
oercolate downward from C2 to Cls to COs, see [13-C33.

the messages are handled differently
depending on the type of defensive asset Within the QUEB model, the elements of

involved. For example, FIs are assumed to the C-2 system are identified with the
have on-board radars (of characteristics queuing concept of a server, and the

specified by the model user) which must penetrators and messages abrut them are

acquire the target before the FI can engage identified as customers. Thus, for example,

it. SAMs, on the other hand, must be any SO is considered to be a server which is .

directed by qround-based fire control trying to service a penetrator by detecting

radars. Flights of FIs can be represented it and generating a message which is a

as jointly prosecuting targets. target report. Tha operators at the SIs are
trying to service the incoming target

In the 3UEP model, the DMs are modeled reports by fusing them, i.e., by determining
simply as delays. This is adequate since which reports from separate SO sites
alternative actions on the part o4 the DMs represent in fact the same physical target.
are not modeled: it is clear from the The individual threat prosecution assets
information network model topology where all (Fie and SAMS) represented at the CO level
information goes. The DMs have only to are attempting to serve the penetrators by
recognize the presence of targets (DMs at locking their local sensors onto them and
SOs), carry out fusion (DMs at Sls and S2), destroying them. Penetrators (again
ane make increasingly detailed target represented as customers) are, from the

assignments (DMs at C2, Cls, and COs). viewpoint of their mission, only successful %

While these are perhaps stressing if the dafense fails to complete their
assignments in real life and require some service before they leave the airspace of • P
"thought," it is adequate to represent them the air defense system. Thus, the
merely as delays in DUEB because the outcome penetrators that leak through the defense
IN TERMS OF WHO DOES WHAT NEXT is highly are, in queuing terminology, the reneger%.
const-ained -- although tasget assignments
on the control side are reactive to The overall structure of the QUEB model
engagement conditions, the fundemental is shown in Fig. 3-2. There is a set of
information flow pattern SO-Sl-S2-C2-Cl-CO equations representing the surveillance side
is fixed. (Looking ahead, this is not the of the system which calculate the statistics 6
case in TADZ.) of message generation. There are equations

representing the resource allocatinn modules

The C12 system structure is fixed in which compute the statistics of order

any given OUEB run. That is, neither the generation. Finally, equations representing

topology of the information network nor the the threat prosecution modules compute the
characteristics of the system elements statistics of as yet undestroyed targets.
changiss during an execution of the model. These last feed back to the surveillance

modules as shown in the figure. Equations
3.2 DUEB Formulation associated with all of the modules represent

the overall measures of performance and

QUEB is a set of mar/ simultaneous effectiveness associated with the system.
equations, derived from queuing theory [I],
which are iteratively solved as the model is 3.3 QUEB Computations
executed. Queuing theory deals generically
with the set-up depicted in Fig 3-1. Here As stated abovi, OUEB consists of a
"customers" arrive into a queuing module, large set of simultaneous nonlinear ,
which attempts to place "servers" at their equations from queuing theory. These are

disposal to carry out some task. A customer solved iteratively to yield the dynamic
which arrives when all servers (of which steady state statistics throughout the
there may be one or more) are busy waits in system. These statistics can be interpretad
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as the system leakage, the percentage of -ccptured in TADZ requires that the DMs
asset utilization, etc. decide where to %end messages as a function

of the engagement conditions as interpreted
locally. There are different classes of
messages represented in TADZ, for example

SECTION 4 classes representing targets of different
priority, which are processed differently as

TRANSIENT AIR DEFENSE ZONE MODEL (TADZ) governed by algorithms representing C^2
doctrine.

In this section we will describe the
TADZ model In a manner parallel to the The information r~itwork In TADZ is that
,discuss-.'n of DUEB above: we will cover tht shown in Fig. 2-3 including the potential
model's features, its formulation, and the" cross-links from SOs and Co and those from
computations necessary to execute it. TADZ Sls to Cls. The DMs in the system determine
is documented in detail in references C53 which links to route information over as
and 163. described in the proceeding paragraph.

4.1 Model Features 4.2 TADZ Formulation

The primary motivation behind the Queuing theory does provide techniques
desi-!n of TADZ, which was the second air for transient analysis through computing the
defense model we developed, wa% to provide a time evolution of the probability
capability to explicitly determine the distributions governing the statistics of -

transient behavior of the air defense C^2 the variables in the system. However these
system. In addition to this desire, which involve solving partial differential
we satisfied by going to an event-stepped equations. In our judgement, the
simulation as we discuss below in Section computational effort required to do this was
4.2, there were several mission features we sufficiently greater than that required for
wanted TADZ to deal with which were absent solving the QUES simultaneous algebraic
in DUES. (DUES could be extended to include equations that we preferred to examinel
one or more of these features If desired$ alternative approaches. Alternative
see Section 5.) approaches were also considered because the

project supporting tne work reported here is
The first feature desired was an explicitly directed at investigating diverse

ability to deal with a mixed threat, i.e., techniques for anialyzing C^2. A second
one consisting of aeveral types of . model of a se~cond type was requested by the.
pentrators (bombers, cruise missiles, etc.) sponsor.
arriving simultaneously. This feature would
allow study of the impact of different TADZ is an event-stepped Monte Carlo
engagement priority doctrines aso executed by simulation. The C^~2 elements and their
thoe C^2 system. Coupled with this was A interconnection are represented as nodes in
desire to model a flexible, adaptive C^2 a network, each nods being represented as a -

structure which would permit information queuing module as shown In Fig. 4-1. Any
routing to be-resporsive to the progress of given node is preceded by others (or by a
the engagement. In contrast to DUEB, which target generation process) and followed by
has a fixed, centralized Ch2 structure, TADZ others (or by targets exiting from the
allows the structure to vary during a run controlled airspace). As indicated in Fig.
both because the defense may choose to 4-1, messages or targets arrive and arm
change the routing of messages and because interpreted as customers In a queuing sense.
the off anse can destroy elements of the C^2 Activities are carried out at the node and
system. The C-2 system adaptivity is messages are sent to subsequent nodes. as

manifested by its ability to react to the appropriaze, i.e., the customers are served.
destruction of defense elements and continue In the course of service, events are
the engagement using a changed Cr2 defined, for example, target enters radar
structure.l coverage, target is detected, SAM is

assigned, target survives engagement, etc.
Certain additional mission elements Events signal the start or completion of

were included in TADZ beyond those present varnious C2 processes, and the time
in DUES. These include ECM applied by the necessary to execute these processes is
offense, defense suppression as just either supplied as an Input to the
mentioned), terrain masking of the defense simulation by the user or computed according
radars and exploitation of terrain masking to A model embedded in it. The simulation
by the offense, and resupply of exhausted advances time as event after event occurs;
defense elements such as FIs which have used this is the sense in which it Is
up their fuel and SAM launchers having no event-stepped. In other words, simulated 0
more missiles. time does not progress in uniform

increments.
The oMs in TADZ are represented both as

delays and as algorithms. The algorithm As the status of each node in the
representation is needed because in TADZ the network (as represented generically in i ".
outcome of their decisions IN TERMS OF WHO 4-1) 13 updated as a result of events,
DOES WHAT NEXT Is not as rigidly fixed , s it statistics are collected for later display.
is in sUEsI operators on the S-side of the Examples of these statistics are the number
system can decide where to route messages, of busy operators at each node, the currednr
either upwarD through the nominal backlog in the many queues, the time taken'-
centralized chain of command or across to to process messages (for those having
the C-side directly. The Cd 2 adaptivity stochastic times), etc. i
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As stated, the simulation is a Morita PASCAL code and runs in a couple of seconds
Carlo model. Stochastic effects represented on a VAX 11/750. We have ui~ed it to study
In the model over which the Monte Carlo the impact on C^2 effectiveness of various
samples can be averaged Include the arrival technology options. We have seen, for
times'of the penetrators, the outcomes of example, that several typical surveillance
detection opportunities, the outcomes of and threat prosecution upgrades do not have
one-on-one engagements, and the time a significant effect on-an overall measure
necessary to carry out various decision of effectiveness such as "average time
;rocesses as well as others. Deterministic between penetrator entry and its first
runs can be obtained by "turning of f the encounter with a defender." It is clear why
noises."' this is so when the numbers are examined -

In short, geographic and geometric effects
4.3 TADZ Implementation dominate this MOE under the conditions

assumed (and not necessarily under all
Monte Carlo simulations of C^2 systems conditions). However the system upgrades

can be very time consuming to execute. We studied do have a significant effect on the
developed a design for TADZ which keeps as pattern of loading imposed on the C^'2
much calculation. as possible outside the assets. For example, better surveillance
Monte Carlo loop so that it is only done leads generally to earlier detection with a
once.* concomitant increase In load on elements at

the "front" of the air defense system, i.e.,
The simulation's components are shown those along the edge over which the

In Fig. 4-2. Input and output processors penetrators enter.
communicate with the user. An event
processor executes outside the Monte Carlo The TADZ model is an event-stepped
loop to set up the potential events that simulation implemented in about 75000 lines
might occur during the engagement, i.e., of FORTRAN. The -higher-level simulation
these are tentatively scheduled. The language SLAM has also been used in the
concept Is illustrated In Fig. 4-3, which Implementation of TADZ. It takes about
depicts a typical penetration route passing 1.5-30 minutes to execute a typical scenario
through a region of surveillance coverage using a nominal number of Monte Carlo
and two "lethality regions" within which Iterations, e.g., 10. Thus TADZ is as much
penetrators are vulnerable to SAM attack, as 1000 times slower than QUES. TADZ does
Based on the penetrator spoed, the nominal provide much more detailed information,
times when penetrators would cross the however. It shows the analyst the impact of
boundaries of these regions are computed and flexible C^2 doctrine and how the C^2 system

*tentatively scheduled. Whether these events reacts to perturbations such as destruction
"*actually" occur remains to be seen. of important C^2 centers durinV' an

engagement. When factors represented both
After the preprocessing just described in QUES and TAD! are compared, the two

Is completed, the cyclical calculations are model4. have been found'to give similar
then carried out by the network processor results.
using physical subsystem models and -*-

information flow models to compute the We have concluded from our studies that
outcomes of many random events. Some of alternative and complementary models of C-2
these modify the precomputed event schedule can be useful for situdying various questions* ..

so that it reflects the experience of a about C^2 systems. We have found that
single Monte Carlo run as it executes. In valuable insight can be gained about C-2
this sense, some events that wore MOEs using models having minimal detail in
prescheduled do not "actually" occur. Each them about sensors, weapons, and decision
pass through the Monte Carlo loop begins makers; it is the interconnection and
with the same tentative event schedule, Interaction of these elements that matters
however each pass through the loop typically most for some studies. Generally, the

*completes with a unique tableau of events obvious is true: more detail caises a slower
which actually took place. running model. The analyst must determine

if the detail to be incladed is really
needed for his purposes, or whether he Is

SECTION 5 succumL.ng to the temptation to put it in
because "more must be better." We point out

COMPARISON AND CONCLUSIONS that detail does not in itself imply that a
simulation model is required in place of an

Two models of air defense command and analytic one. As we said in Section 4,
control, both built using an underlying several of the features included in TAD!
conceptual framework for viewing command and that are absent in QUES could have been

%control problems, have been described in added to DUES if desired.
this paper. Both have been implemented, and
the results obtained using them have been Fina~ly, we have convinced ourselves
comoared. that the skeletal framework for modeling C^2

described in Section 2 is a generally useful
Specific numerical results obtained one applicable to more than air defense C^2

with these models cannot be given in an analysis.
unclassified Publication. However It is
useful to contrast the characters of thertwo
models. The DUES model is rn analytic model REFERENCES
in the sense that its execution involves the
solution of A set of simultaneous equations. Ell Klainrock, L., Queuing Systems,
It Is implemented in about 240i00 lines of Wiley-Intersciance, 1975.



:23 Lauer, e.S., M.G.Dello, J.R. Dowdie, and CUSTO:mCRS WAIT
..C. Kramer, 41C3 Systems Dynamics Project: C~OLS*SRET'irst Annual Report. Vol 1: Conceptual SRE

'ramework and Preliminary Methodology. Vol. ARRIVE FACILITY *CUSTOMERS

CI: Air Defense Problem Study (U)," TR-139,
LPIHATECH Inc., Burlington, MA, Sept. 1982,-
SECRET.ISRVR

:33 Merriman, M.P., A.L.Rlitz, M.G.Bello, ----------------- EED

and J.R.Dowdlo, "C3 System Dynamics Proje,:t#REGD
3oftware Report (U)," TR-1409 ALPHATECH, ------------- CUSTOMERS
Inc., Burlington, MA, Jan. 1993, SECRET.

C42 Merriman, M.P., "C3 System Dynamics Que ing. Moue-i me
Project Software Report: QUEB I1," (Two QeigMdl lmns~ ~.
Volumes) TR-l89, ALPHATECI4, Inc.,
Burlington, MA, October 1993.

C53 Dawdle, J.R., R.F.Gondron, W.S.Powell,
and O.F.Fitzmaurics, "Transient Air Defense
Zone Model (U)," TR-188, ALPHATECH, Inc.,
Burlington, MA, Nov. 1983, SECRET.

E61 Merriman, M.P., R.F.,3endron, and
B.F.Fitzmaurice, "C3 System Dynamics Project
Software Report: TADZ," (Two Volumes)
TR-186, ALPHATECM, Inc., Burlington, MA,
Nov. 1983 fbl.Iidl Ta.

This work was supported by U.S. Air Force TS)IA)

Systems Command under contract DEECIO RESOUJRCE THREAT OUTPU
F33657-81-C-2150. RNe N' ~ ,OuE5 R~CTII L~

DECISIONMAKERS

C' INiFORMiATION SAITC

NSET WORK

RED LUEREDFig 3-2
IWEAPONS WEAPONS SENSOR G UEB Model Structure

Fig. .2-1
C^2 System Elements and Interrelations

E NTER REPORTERS

ti l oc.,0

PRCEtG hOqWzLQEO so

*ACTIVITIES .'PxESO AtTIVITIES

S*Itows - .1c-os 5~...& ) C

Fig. 2-2 Fig. 4-1
C^2 System Information Network Gentric TADZ Node Model

22



Pot(KA100 ;OUT(

TAN lit SuRYCIWANCE COVRrPAG

EXIT SUtV, '!LA'.CE
CO VERAGEC

*W+
MAJO0RITY OF COM4PUTAT ION

Fi1g. 4-2 Fig. 4-,3
TAD! Implementation Sample Event Sche .duliflq

I%

23

%.



LANCHESTER S EQUATIONS AND GAME THEORY

i~. 0
J. Hi. Wozencraft

00 P. N. Moose

Naval Postgraduate School
Electrical Engineering Department

Mionterey, California 93943

tyMMeR ofiioa forces aiesot fth ee o

mode ofcom artillry armodffr)n tpsuffer lu atrtonces gane,where most players can pIrticipate In situ, it will
(sayinfatry, artleafre. frmor) differentrtio typ eso be necessary to use player surrogates and to aggregate

Ja Orange forces. The atrto ofiinsdpn nthe cmareutfomnelvlof resolution to anothpr.
a: tps f oce adthe conditions ofcma.Teprob- Hpfly thmoestuidhere will provide insight

lem considered here concerns optimization of the force bothinto howsbl turoagrgates menigull adhwt
distributions x a (xl, x2, ... , xl) and *y - (y eig luibesrrgts
Y2, enrlia ion. SUMMAR bj to a AEvn te ee

YZ , subject t. cntants on the aggre- PrbeFomltnadRsus
gate forces ( x I and LYi) adgiven the set of Pol, omlto n eut
atrionceicet* fishw thtcosn te In order to model the combat processes we adopt the
objective function as the difference of the aggregate following generalized version of Lanchester's Equa-
attrition rates leads to an optimization problem that is ton: i
mathematically equivalent to a matrix game. It follows
that the combat model' has a saddle-point solution, with a -xu1 - ' '' ri; 'P,
optimum force distribution vectors x* and y* which can l -Xu I a1jYJ E
be idetermined by a linear program. j .

The remainder of the paper investigates the
neighborhood stability of the model at the optimum 1 1, 2, ..
operating point (x*, y*). We define and calculate two
parameters, k1  and k2, which partially characterize(1
s tability. A two x two example is presented along with *

5  x
sample unstable phase trajectories. y *-jJ-y L xtiji - ~ ii 1j;

Command and Control decisions have great influence y j-£JI
on the constraints governing the feasible set of I
different force compositions which can be brought to ,2**,..-

bear in a battle. It is hoped that better understanding
of how these constraints affect the (optimum) battle hr
outcome will provide insight into the -quantitative
impact of commiand and control information systems. the xi and yj represent Blue and Orange
Substantial additional work generalizing and force.i of differint types,0
interpreting the results to date will be necessary, the ui and vj are self-attrition coeff i-
however, before this becomes possible. __________ dns

LANCHESTER'S EQUATIONS AND GAME THEORYth ai an cj arae-featiiocoefficients,
Bakgoudthe bij and dij are aimed-fire attni-

tion coefficients, and *

_Consider a battlefield and assume that Orange and cethe rsn.j aerplnsmn ofi
Blue are opponents. Each has several different types of dns
forces available - say infantry, artillery and armor - Wecnsri
and the total forces available to each side are X and Y,respectively. Our probloii is to determine ar appro-
priate distribution of forces for each side, and to 1  jŽ fralI
evaluate the cost of doing battle.

A more elaborate problem of the same genre would and
involve two or more battlefields, with individual con-
straints on the total strength of each type of force. E xi X. Eyj Y
We again wish to apportion the forces (across the bat-
tlefields) and evaluate the cost of battle.

Motivation to study problems of this sort stems I n ftefrecmoetlvl szrtecr .*

from a belief that the developmient of a theory of Comn- I n ftefrecmoetlvl szrtec
mend and Control requires that we be able to quantify responding equation is to be dropped out altogether: It
the effect of combat information processes on battle --

outcome. These information processes feed decisions *It is also possible to introduce constraints on the -

which in due course consitrain the set of feasible force
distributions. A measure of the utility of information individual types of forces, when more than one combat
might therefore be taken as the change in the "optimum" sitc is involved. We could also cor:idur .aie .

cost of battle implied by a change in the constraints cn weighcetd constraint X a h~x
what forces can be brought to bear. x

24

VV



does not make physical sense to assign attrition against where
non-dxisting assets. Eqs. (1), less the linear terms,
Tre known as Lotka-Volterra equations. They have been R , S .

used extensively to model comlplex ecosystems In which ",E
the stability of a given population distribution is a ;.
central question r2].

The question of an optimum force distribution for If the combat processes remain in equilibrium for T time
our system may be approached by choosing an objective units, the integrated cost is
function (i.e., a measure of effectiveness) for the T. -(4)
combat processes. A useful choice for our purposes is
the difference of the weighted sums of the loss rates: Whether or not the equilibrium cxi be maintained,

N fil ri - -r,) of course, depends on whether or not the operating point
-' sj j ') (x*, y*) exhibits neighborhood stability. To investi- J

i J gate this question, we linearize Eq. I by substituting."

For simplicity, we consider here only the case in whtich xi *- x* + axI, yj *- •j + By
"all the weighting coefficients are unity, so that "

N - 1  -)(2) and discarding terms of Znd order. The result is the( - , " ) . s (2) linear system

The first major result of our study to date Is [1 -
that, for this choice of M, there exist optimum force L y]
distribution (row and column) vectors x* and y* such in which the "conflict matrix" has the form '
that for any other vectors x and y

x~kl *< *y(3)
where ^D ,I- J{"- '-

The nts 9f are real and positive, and the subma-
P j x*AY* trices A and "C" are diagonal.

It is shown in Appendix B that the matrix E exhib- '

and its the property that
-~" a:'''' tp ak\o l

is a matrix determined by the attrition coeffi- " ii ' t " kl • for all '
cients. -

This result, derived in Appendix A, is a direct conse- and
quence of the fact that the objective function M can be
written in a form mathematically equivalent to a matrix -. E* j k2 for all j
game. The optimum vectors x* and y* can therefore be ii - ".
determined by solving a linear program. It follows that .
fairly large problems (say, a few hundreds of variables) fm ih olw'dtyh
can be handled with a reasonable computation load. from which it follo immediately that....

A difficulty arises with the problem formulation,
however, when the optimal vectors x* and y* have zero O- kI&X d k 2 SY(
components, either because the solution is degenerate or .
because the orders of x and y are different. In such where
cases, the objective function M is defective, in that it
Incorporates aimed-fire attrition against non-existcnt &X ) xt ; SY k ByJ
forces. How best then to proceed deserves further
study; several alternatives (none obvinusly superior to j
the others) come readily to mind. are the perturbations of the aggregated forces around

A second difficulty enters because of the fact that the operating point (x*, y*). -
Eq. 1 is non-linear, and can in general only be inte- The column-sum parameters k1  and k2 tell us a
grated numerically. In particular, the optimization is great deal about neighborhood stability. In particular,
valid only at the initial instant, since the force dis- it is shown in the appendix that the operating point"
tributions will usually change continuously as the at- (x*, y*) is locally stable if kI and k2  are both
tritiutonprocesses ulve iange timenegative. If ka k - k > 0, then k is the largesttritton processes evolve in time. eigenvalue of -[ an3 the system is unstable. We

Considerations conjecture, but have not yet proven, that for 0 ( I <'
,nmical Ck 2 , -C has a largest real elgenvalue A with k "..

Variations of force composition can be suppressed !. k2* If true, it follows from Eq. 6 thwx - max

by the artifice of choosing the replenishment rates aX/sY < 0 for ( Amx < k2  (7)
rt and. sj to make

t - 80; 1 - 1, 2, .... 1; J i 1. 2, ... , 3 so that departures of the aggregated forces from a" ulf- 4-
stable optimum equilib-,ri. wtll be of opposite sign such

at x x* and y *. that if one force grows, the other must shrink. The
Since the nptimizing vo.:ors x* and y* are unaf- situation with kI and k2 of opposite signs is more

fected by t•hese replenishment terms, the operating point compli cated and requires additional study, but we an-
(x*, y) is then In equilibrium and the cost of combat ticipate that a similar phase relationship will hold for
becomes all unstable cases, i.e., whenever the corresponding ."

eigenvalue is positive. ,"(m - R -S - M * S - R • - • "

. . . . .. ".
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Example former, with proof of the conjecture that kI, k2 ) 0
implies instability, and methods for estimating the doam-

The three aggregate parameters M*, k1  and k2  inant eigenvalue when kI and k2  are of opposite
summarize the interplay within a rich non-linear dynamic signs, both having high interest. In addition, it is
system of great complexity. Even the 2 x 2 case in- important to extend the stability analysis to include
volves 26 parameters, all of which can in general be the case where forces of different types are constrained
non-zero. The following numerical example serves to separately.
ineicate the diversity of behavior patterns which can How to obtain approximately optimum force distri-
ensue. For this example, the bilinear attrition coef- butions when the solution of the linear program Is de-
ficients are given by the matrices generate also deserves careful study; and a great deal

of analysis plus numerical experimentatiLn should be de-
10 .3 .2 1 voted to understanding the influence of the various

-. o ". -[1

A C-.1 paraleters on aggregate parameters such as M*. kI,
.6 .9 1.1 .6 k 2 , X/X and ;/Y.

A rich variety of operational questions appear to
the linear attrition coefficients by fall within the purview of our model. By way of iT-

lustration, ccnsider the scenario of Figure 2. There
[.15 .1 [0 0 are three battle areas, labelled I. It and 111, with] -aD - three different types of Blue forces and two types of

.15 .3 0 0 Orange. The most obvious question, how should the
forces be distributed, given X and Y, has already been

and the self-at'crition coefficients by discussed, It is worth note in passing, ;Iowever, that
objective functions of the form

1X 2
U =. "3 V-M-1 -2•

The results of optimization are tabulated in Table may be particularly relevant to military operations; the
1, in which for convenience we have held the XY product coefficients C1 and C2 would presumably be chosen to
constant at 4. We note that the operating point (x*, reflect a commander's willingness to accept losses, with -" 4

y*) is unstable for small values of X, and stable for the smaller Ci attaching to the offensive force.
large values. When the signs of k1 and k2 are the A more subtle question concerns which battle areas
same, 'max also has that sign. But for mixed to defend (or attack). Given the attrition coefficients
signs, Amax may be + or -. [A conjecture that the and the aggregate force levels, an unattractive area
largest absolute value governs in such cases can be dis- will be assigned zero forces by the optimization rou-
proved by counterexample]. tine. In order to "shorten the lines," however, we

Finally, we note that the cost of combat, M*, could ask by how much would the attrition coefficients
favors Orange (e.g., y) for both small anid large values need to be changed (say, by building field fortifi-
of X, whereas Blue is favoi I in the intermediate cases. cations) before the aree would become defensible. Or in
Why this happens becomes clear in terms of the indjvid- which drea should the field fortifications be
ual aggregate loss rates X aid 1. For example, I X is constructed?
high for X - 1/2 because of the adverse force rat o. As Additional questions address the force level neces-
X increases, decreases because Y decreXses. sary to achieve the military objective. For example,
Finally, when X =4 the area fire losses cause IX Ito how large must Y be (for given X) before the combat
increase agains. The same factors affect the behavf'r becomes unstable (i.e., before a breakthrough can be
of I i1, so that M* is the differene of two U-shaped achieved?) and in which of the three areas will the
curves. It is nonetheless reassuring that the frac- breakthrough occur. For this we must look to the eigen- .
tional loss rates, I i VX and I iYY, behave monoton- vector corresponding to the dominant elgenvalue. Con- . • -,
ically, as conventional wisdom would predict. versely, for the defender, how large must X be in order

Figure I shows two unstable phase trajectories for to maintain stability and arevent a breakthrouqh? It
the case X = 1, Y = 4. These were obtained by per- seems certain that the modes of instability, and the "
turbing the optimum system from its equilibrium point by terminal states to which they lead, will be of far
very ýiall amounts first in one, and then in the OP- greater operational importance than the value of M*
posite, direction along the eigenvector corresponding to itself.
the dominant root Xmax - .137. In the first case, To answer questions such as those above in a mean-
indicated by dots every 40 time units, the system ingful way will require a great deal of additional work.
diverges from (x*, y*) with X increasing and Y decreas- In particular, techniques for estimating and validating
ing. However, because of the nonlinearity of the gener- attrition coefficients appropriate to a specified style
alized Lanchester equations, there are multiple equilib- and place of combat need to be developed. The concepts
riun points. In this example, one of these is at (xI considered here may provide useful guidance in how to
= 1.77, x2 - 1.2862) and (yl -1.4667, Y2 - .352) agqregate detailed coefficients into higher level combat
corresponding to X = 3.056, Y 1.419. Furthermore, models; but simulation, controlled experimentation and
this equilibrium point Is stable and the system equal- the analysis of real historical data will be of crucial
izes itself there, far from the original operating importance.
point. Here even though Blue gains .he initial advan- Lastly, the theoretical constructs co,|sidered thus - "
tage, he is unebie to cclphetely eliminate Orange. far have been essentially static, i.e., optimization at

In contrast, when Orange gains the initial advan- one point in time. If the optimum point is unstable,
tage, he completely eliminates Blue in less than 120 then it seems unreasonable to believe an Intelligent
time steps. This trajectory (the one on the left) was coninader will not attempt to redistribute his forces in
obtained by perturbing the equilibrium solution in the order to capitalize on an incipient breakthrough, or to
opposite direction along the eigenvector of Amax. try and reverse one. Certainly neither wi'l continue to

replenish forces at a constant rate, as assumed in our
Discussion and Recommenedations model, but will commit reserves in bulk at an opportune

time. When to reoptimize as the i-rce levels diverge "'-
The many issues which remain outstanding divide in- from their initial equilibrium rema .s open to further

to two main categories: technical and operational. study. Surely one important question is whether
Ouestions concerning stability are prominent among the another, stable equilibrium point lies nearby the
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astable optimum point, as in the example presented APPENUIX A: GAME THEORETICAL OPTIMIZATION OF C

3ove; or whether, if left unchecked, a catastrophe is LANCHESTER EQUATIONS

a the making for the side which, perhaps by chance,

uffers the first small disadvantage. In addition, If -Measure of Effectiveness
he force levels move too far from their Initial values,
t may become necessary to modify the system equations Consider the generalized Lanchester Equations

q reflect changes in the style and locale of combat. ¶'

We conclude by expressing the opinion that an im- i a "xi u - Xi a. YJ " bij Yj + ri
ortant potential area of application for this and re- J
ated work lies in war games and simulations aimed at
valuating and improving command c.),itrol and systems and ,., 2 .... ,
octrine. TRL! I

a ' ' 4 ; ; X f Y k2  ,I;" 'I

/2 8 .308 .192 6.192 1.OU .5.42 -S.342 .S.O5 2.2(A4 .J32 . l25 11 fAf t .6•

1 4 .6S .395 M.I AOS -4.713 -4.65S .142 .942 -.11S .13? ., .1l3 1 14

2 2 1.231 .*76 1.577 .423 -4.340 -4.622 .223 .311 -. 431 -.^53 ?.1" ?.311

1 2.46 1.54 .AM7 .192 4.646 .4.686 -2.16 -. M39 .1.061 -. PI', 1.31? , (A.1). .• -vj y - yj cj xi - dj xi + sJ; .:..-.;j ii Y, ,". ... -

J- i 2, ... , J
where the xi and Yi represent opposing forces of .. '.
class i and j respectivily, and the other parameters are
non-negative constants. Furthermore, assume that there
are constraints

. X, x. _ Y, X- o, y1  -

for all i, j.

on the forces.
S; Our objective is to determine advantageous composi-

tions for the forces. To this end, .it is convenient to
define a measure of effectiveness, M, for the combat by

; ~ ~M f,(x, - ri) (y-Sl:.:.. .!

1 The fi and gj are arbitrary weighting factors,

3 X which for notational simplicity we hereafter assume to

FIGUoE 1: WISTABLt PMSE fECTORIES be unity. Then
M -'Ex i(ctj - aij)y j +Ex(di - u,) E (

ii i j"'" -

'11 I> u where di t dij, bj b.-bij

'31
This can be rewritten as

12 D ,12 M - y + (A.2)
x22 Y t )22 ""T:'.

92 •where A C - A : an I x J rectangular matrix

"b b -v : a .2 el eaent row vector

d d - u : an I element column vector

' and where x and y are I-element row and J-element column
'23 , vectors respectively. The expression for N can be writ-
'33 /J ten more homogenously y defining matrices

"FIGURE 2: I.T-PI-E SAfEFIELDS
of tYoe i eWsied to battle- e
fI@eld J. --

so that ,'-- .
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S

N - x•y, (A.3) But Eqs. A.5 and A.3 together imply that

with +- ."iy* (Ai - "i + DF)y* AiY* - •Y* +

Game Formulation so that, for all i,

We can interpret M as the payoff of a matrix game Aiy* + d'i - (M* + 3y*)/X 4 k (0.1) 0

by defining Similarly, for all J,

p A x/X, q 0 y/Y, m .*• - (M*-x*A/Y -k"

Then
It follows that

M q k 8X - 8 k 8Y (B.2),

from which it follows [3] that there are optimum B 2

probability vectors p* and q* such that, for all x and where aX ."8xI, 3Y _ FdaYj
x < M* s x*Ay (A.4) The parameters ki and k 2 serve to. characterize par-

tially the dynamical relationship between the aggregated

where M 4 x*Ay* perturbations 3X and 8Y of the opposing forces.

x* Xp*, y* Yq, Stability Analysis 0

The vectors p* and q* may be found by solving (either In terms of the perturbation vectors Jx and ;y, Eq.
of) the dual linear programs A.1 can be written as

(P) min pc (D) max bq A B B3"-1

s.t. pX_ >b s.t. X< c y -y (8.3)
0

p_ 20 q 0 where "a" A Y* + u b xia + b

(where b and c are row and column vectors of I's, having d c cl. + di X*Cj 4 V
J and I components respectively) and normalizing the t it it
solutions by dividing by the (cormon) optimum value of and a -i " 0 for all j 0 i
the objective functions. The reciprocal of this optimum i" " "i.

value is Wt. The operating point (x*, y*) will be stable iff all ei-
A result we shall need later involves the comple- genvalues of the "conflict matrix" ' - Z-

mentary slackness conditions: if p. q solve the linear .
program, then ].

with: Ai the ith row of A and IJ the Jth column of are in the left half plane. By similarity, an equiva- ".'
lent statement is that all eigenvalues of the matrix

It follows that

xi > 0 - iy* - M*/X " A.B (8.4)
(A.5s) ,. .-.. ,.

yj* > 0 -• x'A~J - I/Y must be in the LHP.

Note that the column sums on the left side of Care
APPENDIX 1: NEIGHBORHOOD STABILIl? given by .

The dynamical evolution of Eq. A.1 is complicatedin. -Am u _ "c +dn Z li , "( A i Y * + U i ) + ( c i t 4 + d i t ) " k" . - .o': 1 ' " = "

by the non-linearity of the equations. Considerable i - i i *i 1

sight may still be gained, however, by selecting (x*, A .
y*) as the operating point and choosing the replenish-
ment rates ri and sj to make all time deriva- and for columns on the right by
tives zero. Thi (x*, y) is an equilibrium point, and
an important question is whether or not the equilibrium * "(x*CJ + vj) + (x~ai +bij) = k2  "
is stable. i i - ". 2

Aggregate Properties
We make two important observations: First, all of the

We consider small perturbations around (x*, y*) ýy Gershgorin disks [4] of C lie totally withi,- the LHP
letting whenever

xi , x1 +Baxi' yj +,YJ k 1 < 0, k2 < 0 (B.5)

for all non-zero components of x*, y*. Negiecting 2nd 0
order terms, we then have from Eq. A.2 which is therefore a sufficient condition for kx*, y*) .. .

x - Byx[y* + •] + [A yto be a stable operating point.
y[x*A - By Second, if. -.
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k I k2  k 0 (8.6)

then k Is the dominant eigenvalue of ?Zand the system is
unstable. That k is an eigenvalue of C is seen from the
fact that

Bect k1]- o

"since any row of C - kI can be brought to all zeros by
replacing it with the sums of all.;he rows. Consider-

i- -- ation of the Gershgorin disks of C, all of which pass
through k, show it to be the elgenvalue with largest

S . real part. We conjecture, buJ have only been able to
. l prove for special cases, thatC will always be unstable

when k1 and k2 are both positive. The stability of
* C •is not determinable from k1 and k2 alone when they

"are of opposite sign.
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D4NFOPUATION PROCIESING AND DECISIONNKAXNG ORGANIZATIONS: A MATHEMATICAL DESCRIPTION

by

Alexander R. Levis

Laboratory for Information and Decision Systmas
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

SABSTRACT The first one is. the modelign of the tasks the

organivation is to execute and the definition of the
Am overview of an analytical approach to the modeling boundary between the organization and its environment.
and evaluation of information processing and The second step is the selection of mathematical

c decisionmakins organizations is presented. The models that describe the members of the organization.
mathematical framework used in modeling the The third step is the modeling of organizational form,
individual decisionmakers as well as the organization i.e., the specification of the information and
is that of n-dimensional information theory. The data decision structures that characterize the
flow formalism is used to model in a precise manner organization. This step inoludes the specification of
the various types of interactions between the protocols for information exchauge and the

. decisionmakers as well as interactions between human* modeling of th, communication systems, the data bases.
and the command, control, and communiration system and the decision aids that the organization uses to
that supports the organization. Comparison and perform its tasks.
evaluation of alternative organizational forms is
accomplished by considering organizational The methodology itself consists of two main -

performance, individual workload, and the sets of parts. In the first one, the analysis of the
satisficing decision strategies. organization, the models are used to describe the

organization in terms of a locus defined on a
1. INrixDUCTION generalized performance - workload space. This louns

is obtained by computing an index of performance for
In considering organizational structures for the organization and measures of the workload for each

teams of decisionmakers, a designer must address the individual member of the organization *a functions of
. •questions of who receives what information and who is the admissible decision strategies used by the -

assigned to make which decisions. The resolution of decisionmakers. The socoad port of the methodology
I these questiens specifies the organizational form. addresses the question of evaluating organizational

The designer's problem is the selection of a form so designs and comparing alternative structures.
that the resulting organization meets its performance
specifications and the individual members are not The analytical framework used for modeling the .-

* overloaded, i.e., the task requirements do not exoed tasks, the individual organization members, the Ca
their individual processing limitations, system, and the organization as a whole is that of n-

dimensional information theory [131. A brief
I While the role of the human decisionmak rs is description of the key quantities and of the partition

central to the design problem, the latter cannot be law of information (S$ is presented in. the next
decoupled from the consideration of the information section.
system that supports the organization. Consider, for

* . example, a tactical military organization suyported by 2. INFORMATION THEORETIC FRANEWORK
a command, control, and communications (C ) system.
Information is collected from many sources, Information theory was first developed as an
distributed to appropriate units in the organization application in commuzication theory (151. But, as
for processing, and used by the commanders and their Khinchin (91 showed, it is also a valid mathematical

* staff to make decisions. These decisions are then theory in its own right, sad it is useful for
passed to the units responsible for carrying them out. applications in many disciplimes. including the
Thus, a given organization design implies the modeling of simple human decisionmaking processes [161
"existence of a C' system that supports it. and the analysis of information-processing systems.
Conversely, the presence of a C system in support of

* an org,.iz.tion modifies the latter's operationas It There are two quantities of primary interest in
may creste operational modes not foreseen during the in~ormation theory. The first of these is entropy:
organizational design phase. Therefore, if a given a variable x, which is an element of the -_

quantitative description of the organization design alphabet X, and occurs with probability p(x). the
problem is to be developed, it must take into account entropy of x. B(x), is defined to be
not only the organization members, but also the
collection of equipment and procedures that constitute
the organization's C' system. 3(x) m " 2 p(X) log p(x) (2.1)

"In order to develop a quantitative methodology '
for the analysis and evaluation of information
processing and decisionmaking organizations, it is and Is measured in bits when the bmse of the algorithm
necessary that a set of compatible models be obtained is two. The other quantity of interest is average
that describe the organization and its environment, mutual - information or transmission: given two
This modeling effort has been divide, in three steps. variables x and y. elements of the alphabets I and Y,

30
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s-d given p(z). p'y), and p(zly) (the conditional input to the system that is sot included in the

probability of x, given the value of y). the output, The third term, T(w,:w,:.... :w :y) is called

transmission between x and y. T(z:y) is defined to be coordination and designated Go. 1t is the N-

dimensional transmission of the system, i.e., the

T(z:y) a3(z) -H () (2.2) amount by which all of the internal variables in the
Y system constrain each other. The last term,

. Ixz~wxw•,,...vN..sy). designated by G. represents the

where uncertainty that remains in the system variables when
the input is completely known. This noise should not
be construed to be necessarily undesirable, as it is

I (2) p(y) S p(zly) log p(zly) (2.) in comunication theory: it may also be thought of as
y '. £. internally-generated information supplied by the

y x system to supplement the input and facilitate the
decoision-aking process. The partition law may be

'" is the conditional uncertainty in the variable :. abbreviated:

given fall knowledge of the value of the variible y.
e - a + 0 + Go + G (2.8)

McGill 1131 generalized this basic two-variable
input-output theory to N dimensions by ezt-nding Eq.

• (2.2): A statement completely analogous to (2.8) can be
made about information rates by substituting entropy
rate and transmission rates in (2.6).".N

Tlz1 :zs:...:xN) ElEu)- .z,.. ) (2.4)"1-1 N3. TASC MODEL [8.1b]

The organization, perceived as an open system
For the modeling of memory and of sequential E101, interacts with its environmenti it receives

i . nts which are dependent on each other, the use of signals or messages in various forms that contain
the entropy rate, D(z), which describes the average information relevant to the organization's tasks.
entropy of x per unit time, is appropriate: These messaqge must be identified, analyzed, and

transmitted to their appropriate destinations within
"the organization. From this perspective, the

"!(x) 0 ims tis(t), z(t÷I),....z(t+sm-1)] (2.5) '' crsanization acts as an information user.Sm--. m

Let the organization receive data from one or

Transmission rates, Tfz:y). are defined exactly like more aoues external to t Bvery vn units of time
transmission, but using entropy rates in the on the average, each source a generates symbols,

definition rather than entropies, signals, or messages sai from its-associated alphabet b
a'. with probability pat. i.e.,

"The Partition Law of Information [31 is defined
"for a system with N-I internal variables, w, through P p( ) a -I I 1,2a. a..

aN,. and an output variable, y, also called wN. The ni a ni ni a (3.1)
law states ($.1)

N
,-1 l(wi) -T(z:y) + y(C:wz,w ..... WN.-) T.

I-I ' ~~Pat a ,2...N (3.2)-"'

1-1+- Tt-:1, ...
* T(w :v 5 :"' :wN-•:Y) where- y is the dimension of an. Therefore. is -----

the ms*: frequency of symbol goneration from source R.

+ D(Wz.W 5 ... wNC .) (2.6) The organization's task is defined as the

"-1 processing of the input symbols zn to produce outInt
symbols. This definition implies that the

and is easily derived using information theoretic organization designer knows a priori the set of
"identities. The left-hand side of (2.6) refers to the desired responses I and, furthermore, has a function
total activity of the system, also designated by G. or table L(Cn) that associates a desired response or a
"Each of the quantities on the right-hand side has its set of desired responses, elements of T, to each input
can interpretation. The first term, T(z:y), is called zn a Ia-
throughput and is designated Gt, It measures the
amount by which the output of the system is related to It is assumed that a specific complex task that
the input. The second quantity. mast be performed can be modeled by N' sources of

data, Rather than considering these sources

* T CzWv, 5 a w W T~xzw w y seOparately. one supersource composed of* these N1"y a' .... N-) a- ..... s Vouy) :aurces is created. The input symbol z' may be
represented by an N'-diensionai vector with each of
the sources represented by a component of this vector,

• T(x:y) (2.7) i.e.,

is called blockage and is designated Gb. Blockage may
be thought of as the amount of Information in the %

3]
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' * (a ..... a) X_ a (3.3)

ORGANIZATION -"

To determine the probability that symbol z' Is
generated. the independense between couponents •us be 7r' .... OM
considered. If all components are mutually
ladopoadent, then p is the product of the 6
probabilities that coal component of x' takes on its V O."M M
roespetive value from its associate$ aeihabot:

pJ " Pal1(3.4) l"-M"

If two or note components art probabilistioally
dependent an each other, but as a group are mutually
independent from all other components of the input
vector, them these dependent components can be treated
as one supereomponent, with a new alphabet. Then a Figute 1. Information Stractures for Organizations
new input vector. x. is defiaed. composed of the
mutually independent components and these super-
components. 4. MODEL OF TIE ORGANIZATION MWllER [2.3.111

This model of the sources implies synchronization The complete realizatiom of the model of the
between the generation of the individual souroi decisionmakr (D1) who is Interacting with other • .
elements so that they may, is fact, be treated as one organization members and with the environment is shown
input symbol. Speoificalty, it Is assumed that the schematiclly in Figure 2.
mean laterarrival timn ior each component va is equal
to v. It is also assumed that the generation of a
particular input vector. zj. is it.dependent of the
symbols generated prior to or after it.

The last assumption can be weakened, If the .
soarce is a discrete stationary orgodic one with
eonstant intersrrival time V that could be Y SA 2 I.R
approximated by a Nartov source. Then the information
theoretic framework can be retained [8]. "" -

ýR t MEMORY
The vector output of the source is partitioned

into groups of components that are assigned to
different orgrnisation mmbers. The J-th partition is
denoted by EJ and is derived from the corresponding
partition mj trin d which has dimension nj z N and Figure 2. The Lnteracting Decisionmaker with Memory

The DN receives sIngals. a a I from the
xz -x 2. (63.5) environment with Interarrival time t. A string of

signals may be stored first inL a buffer so that they

Each olumn= of *J has at most one non-zero element, can be processed together in the situation assessment
The resulting vectors my have some, all, or no (SA) stage. The SA stage contains algorithms that

opoet ne .- process the incoming signals to obtain the assessed .situation z. The MA stage. may access the memory or

The set of partitioning matrices (xa.xs.....Rn) internal data base to obtain'a set of values do. The"
shown in Figure I specify the components of the input assessed situation a may be shared with other

vector received by each member of the subset of €zganization members3 concurrently, the DO may receive
decisionmakers that interact directly with the the supplementary situation assessment a' from other
organization's environment. These assignments can be parts of the organizations the two sets z and s' are

vthe latter case combined in the information fusion (IF) processingtime invariant or tine varying. In staeeo otantterne f hseatsCd) romth..

the partition matria can be expressed as stage to obtain 1. Some of the data UP from the ;F
process may be stored in memory.

S for t T The possibility of rcceiving comands from other
organization members is modeled by the variable v' and

AJ(t) - (3.6) a coamand interpretation (Cl) stage of processing Is
0 for t a T necessary to combine the situation assessment i and v'

to arrive at the choice V of the appropriate strategy

The times at which a decisionmaker receives inputs for to use in the response selection (ii) stage. The RS
processing can be obtained either through a stage contains algorithms that produce outputs y in
deterministic (e.g., periodic) or a stochastic rule. response to the situation assessment i and the command
The question of how to select the set of partition inputs. The RS stage may access data from or store

matrices, i.e., design the information structure data In memory [7,81.
between the environment and the organization. hbo been
addressed by Stabile [17,18).
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The expression for G0 shows that it depends onthe two internal strategies p(u) and p(vll) even

the comand input v' mtdifics the DM's internal

decision after p(v1i) has been determined.

In the expresv ions defining the system
coordination, Pi is the probability that algorithm fi
has been selected for processing the input z and p1 is

the probability that algorithm h has been selee.d.
i.e., u - I and V - J. The quantities gS represent
the internal coordinations of the corresponding

Figure 3. Detailed Model of the Interacting algorithms and depend on the distribution of their
Decisionnaker respective inputs: the quantities ai, ai aze the '

number of internal variables of the algorilhm. f, and
A more detailed description of thý decisionmaker h. respertively. Finally, the quantity I is the

model without buffer or memory is shown in Figure 3. attropy of a binary random variable: •
This figure shows the internal structure of thm four
processing stages: SA, IF, CI, and RS. The situation

M(P) plos(4.3)assessment stage consists of a set of U algorithms 2 p - (1 - p)log2(1-p)
(deter.tinistic or not) that are capable of producing
same situation assessment z. The choice of algorithms
is achieved through specification of the internal Equations (4.1) to (4.4) determine the total activity

variable u in accordance with the situation assessment G of the decisioumaker according to the partition law

strategy p(u) or p(ulx), if a decision aid (e.g., a of information (2.6). The activity G can be

preprocessor) is present. A second internal decision evaluated alternatively as the sum of the marginal

is the selection of the algorithm in the RS stage uncertainties of each system variable. For any given

according to the response selection strategy inteznal decision strategy, G and its component parts

p(I•.v'). The two strategies, when taken together, can be computed.

constitute the internal decision strategy of the Since the qnantity G may be interpreted as the
docisionnaker. Sneteqa.t a eitrrtda h

total infomLation processing activity of the system.

The analytical framework presented in Section 2, it can ser•a as a measure of the workload

when applied to the tingle interacting decisionmaker of the organization member in carrying out his

with deterministic algorithms in the SA and RS stages, declsionmakikn task.

yields the four e;;regsat quantities that characterize
the information processing and decisionmaking activity The qualitative notion that the rationality of a
" withia the DN [2,11: human decisionmaker is not perfect, but is bounded
within th R1 :(12), has been modeled as a constraint on the total

•tactivity G:

Gt =-T(x,av':ay) (4.1) G Gt + Gb + 
0
n + G F - (4.6)

slokeage: where v is the symbol interarrival time and F is the
maximum rate of information processing that
characterizes a Jecisionmaker. This constraint

Gb = H(xz'.v') - Gt (4.2) implies that the docisionmaker must process his input
at a rate that is least equal to the rate with which,0
they arrive. For a detailed discussion of this

Internally esarated infotmation: particular model of bounded rationality, see Boettcher

and Levis E21.
m - 1(u) -WL.(v) (eakening the assumption that the algorithms are

deterministio changes the numerical values f Gn and

Coo"dmatiom: of the coordination term G0 [41. If memory is present
in the model, then additional terms appeet in the 0
expressions for the coordination rate and for the
internally generated information rate [7,81.0e - • pi~g(p(x))' + uiS~ + 5(z) ...

1-1 S. ORGANIZAII014AL FORK

In order to define an organizational structure,
+ S IF(V(a'X')) + 8CI(p(!,T') the interactions between tho human deocisionmakers that

a constitute the organization must be specified. The •
interactions between DMIs end the environment have

V already been described in Section 3. The internal

pje( interactions between D~s consist of receiving inputs
+ a(pi J)) + ej 1(pj) + R(y) from other DM's, sharing situation assessments,
J-l receiving command inputs, and producing outputs that

are either inputs or commands to other DM'%. The
detailed specification of the interactions requires

4 B(z) + 1(V) + 1N(TV) + T (x':z') the determination of what information is to be passed -__

among individual organization member% and the precise

+ .zzv (4.4) sequence of processing events, i.e., the standard
operating procedure or communication and execution
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-protocol of the organization.

Information structures that can be modeled within
this analytical framework are those that represent ._'"_ __

synchronized. aoyclical information flows. Since
inputs are assumed to arrive at a fixed average rate, X f
the organization ie constrained to produce outputs at
the ame average rate. The overall response is made
up. in general, of the responses of several mombers.
therefore, cach member Is assumed to complete the f D-N-'-
processing corresponding to a particular input at the
same average rate.

Within this overal rate synchronization, however.
processing of a specific -Input symbol or vector takes
place in an asynchronous manner. If the requisite
inputs for a particular stege if processing are
present, then processing can begin -ithout regard to 2

amy other stage, which implies tb concurrent X 2 f
processing is present. For example, as soon as the
organization input arrives and is partitioned through
w, processing of x begins to obtain z. The IF stage •. L

must wait, however, until both the a and z' values are
present. Each stage of processing is thus event-
driven; a well-defined sequence of events is therefore
an essential element of the model specification. Figure 4. Block diagram reproesetation of two person

organization
Acyolioal information structures are those whose

directed Iraphs representing the flows of information
do not contain any cycles or loops. This restriction To represent the Information theoretic
is made to avoid deadlock and circulation of messages decisionaking model using a data-flow formalism, a
within the organization. Deadlock occurs whet one ON simple translation in structure is made: distinct .
is waiting for a message from another in order to inputs and outpcts of each subsystem are assigned
proceed with his task, while the second one is in turn places and the processing within a subsystem is
waiting for an input from the first, represented by a transition. Associated with each

transition is the set of internal variables of the
The system theoretic representation of the subsytm, axelu.,'vs of the input variables, which are

organizational form is useful for showing the various accounted for separately by the input places. By
processing stages or subsystems. For example, in assuming a probability distribution on the
Figure 4, a two person organization is shown in block organization's inputs, distributions are also included
diagram form in which the second member sends on the places in the structure. Therefore,
information to the first (se5), who in turn can issue distributions are also present an subsystm variables.
comands to the second DM. and all information theoretic quantities are well-

defined and can be computed as before.
Evaluation of the various Information theoretic

quantities, including total activity, can be The organization structure shown in Figure 4 can
casomplished readily, using the decomposition be represented in data-flow terms, as shown in Figure

property of the information theoretic framework (51. 5. In addition to places, transitions, and directed -
However, the internal information structure of the arcs, the structure contains two new elements, the
organization is often ambiguous when represented in switches us and V2 These are logical eleents which
block diagram terms. For example, the requirement direct the flow of tokens. The switch u takes
that both a' and ' be present before IF processing values independently, while the value of vF is
can begin is not apparent from Figure 4. An alternate determined as a result of the processing by algorithm
representation is needed which shows explicitly the Bs contained in CI $. Since the structure shown in
information stxuoturet without compromising the Figure 5 is equivalent to the system theoretic
usefulness of the information theoretic decomposition structure in Figure 4, the internal variable
property. definition and all information theoretic quantities

remain unchanged. However, the information structcre
The data-flow schenm [1.63 has been developed as of the organization is made explicit in Figure S.

Smodel of infornation flow for systems with
asynchronous, concurrent processing activities. Three Once an input X is partitioned, the processing by each
basic elements are used \in their structure: places. DM in his respective $A stage (algorithms f) begins
transitions, and directed.acts which connect the two. concurrently and asynchronously. The information
Places and transitions represent conditions and fusion processing (algorithm Ai) must wait until both
events, respectively. N event occurs unless the zs and z2 have arrived at the Lnput places of IF'.
requisite conditions are m•t, but the occurrence of an Siailarly. DM' must wait until DN issues a comand

ev nt1.e r s to nw • nditions. Tokens are used input v1s before the 2roces8 of command interpretation
to matk which conditions a o in effect; when all input can begin. This sequence of rrocessing is evident

places to (conditions fo ) a transition contain a from the representation. Note that because of the
token (are satisfied), thei the event can occur, which assumed synchronization with respect to organization
in tcrn results in the generation of tokens for output inputs, there can be at most one data token in any
places. Since tokens are carriert of data, each single place. The structure is obviously scyclical
transition is a processor which generates a result and deadlock in the organization is prevented.
from the input data and deposits it on an output token
which then moves according to the schesma' structure
along a directed arc to the next stage of processing.
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;5 7 Figure 6. Model of SA subsystem .it;& data base access.

Consider mext the effect of a data base
containing data that do not change during the

Figure S. Data-flow representation of organization execution of a task, i.e.. the data are fixed. At -
structure, first glance, it sight seon that the addition of the .

data base with fixed values would have no effect on
the total information theoretic rate of activity of

While the data-flow framework provides an the system, i.e..
equivalout representation for the class of
synchronous, acyclical information structure , it is i(d ) - 1 .. 1
also able to model more general structures, many of H 0 1 o 1,3....11 0.1)
which are of interest in the context of organizations. --

For example, the framework can easily model the .
cyclic structures which arise when a two-way exchange However. the problemn is more complex. For example,
of information is present in an organization. Such if each algorithm fj accesses P parameter values from :
protocols are, of course, common. In addition, fully the data base (in contrast to having these values
asynchronous structures can be represented within the fixed within the algorithm itself) then the rates of .
framework. Since in a large organization members do throughput, blockage, and noise of the combined system ...

not operate at the same rate (same tempo), Vill not be affected, but the coordination term will
asynchronous processing is of much interest. The have additional activity rate: -
study of these structures and their implications in JR-
terms of the n-dimensional information theoretic U,
framework are subjects of current research. A* * , ".-"(2

" i ip~-) $2 '.".

A second advantage of the data flow framework is
that it provides a natural way for describing in S
precise manner the interactions between the Dl's and Sine a data bass Ineases the overall activity
the data bases and decision aids present in the of the system without creating any change in its ,
organization. input-oatput characteristic, one would question its

presence. There are several advantages: (a) reduction
in the information that needs to exist within the ".

The presence of data bases, an integral part of a algorithms or within the decisionmaker model, (b)
Ce system, requires the introduction of two additional increased flexibility in the use of algorithms and
modeling elements. The first is the query-response hence possible reduction in the number of algorithms,
process. The second is the modeling of the data and (c) access to omon data by several organization
storage devices themselves. Consider, for example, members. Even though there is increased coordination S
the situation assessment subsystem hbown In Figure 6. activity due to the interaction between the DU and
An accordance with the internal strategy n, an the data base, the total activity of the Dl may be
algorithm is chosen to process the input x. However, reduced - the task may be redesigned to fall within
this algorithm may require parameters (e.g., terrain the bounded rationality constraints.
information, meteorological data) or past situation .y.
assessments in order to do the processing. The data Similar arguments apply to the modeling and
base is accessed and queried for this information analysis of decision aids. Preliminary results
through the signal D. The data from the data base indicate that an inappropriately designed decision aid
are provided to the subsystem of the DW through Do. may not reduce a detsionsmaker's information
The same link. DI, can be used to update the processing load. but may actually increase it (41.
i.formation in the data base. Clearly, the '.lock
diagram representation is ambiguousj the data In this section, an approach to modeling the
flow formalism allows for the precise modeling of the organizational form - the specification of the
fact that data is requested only when certrin protocols for interaction between D -'s - and the
conditions are not. supporting comosud, control, and comunication system

has been presented. It is based on an integration of 0
the data flow formalism with the information theoretic
framework used in the quantitative modeling of the
decisionmaking process. ,
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6. AXALYSIS OF ORGANIZ fOH4S whore the weightiag coefficients are probs%ilities.

As stated la Section 3. it is assumed that the Corresponding to each D(pk) is a point I& the
designer knows a priori the set of desired responses Y simplo:
to the input set 1. Then the performance of the
organization is accocplisbing; its tasks can be
evaluated using the approaoh shown in Figure 7. ~ ~ h' 1

I k 1. P 0 Vk (6.5)

The possible strategies for as individual Mi are

X ORGANIZATION Y elements of a closed convex hyperpolyhedron of
(A or 0)dimension a-il whose vertices at* the unit. vectors

corresponding to pure strategies.

Because of the possible interactioms among
organization members, the value of G depends sot only

Z L(X) dt.,Y) Efd(y,Y ý on D(pk) bat also on the internal decisions of the
other iecoisionmakers. A pare .rgamizational strategy
is defined as a 11-tuplet of pure strategies, one from
each DU:

Figure 7. Performance evaluation of an organization LA S (Dh D 0 66

The organization's actual response y can be compared Inpedtitralecso srtgesfrahD,
to the desired set Y and a cost assigned using a cos t whether pure or mixed. induce a behavioral strateg
function d(Y.j). A., expected value of the cost. (141 for the organization, which cean be expressed as
obtained by averaging over all possible inputs, can
serve as a performance index, 3. for the organization.
For exemple, if the function d(y.Y) takes the value of A x (A ) (6.7)
zero when the actual response is one of the desired £ za,., k
oaseeand unity otherwise. then zs..Ni-

1 - (d(yY.)I p(y ii Y) (6.1) where pt. Is the probability of asing pure strategy,
4Dk.. Decanse each DU is &assmed to select his

sti~tegy independently of other Wes. the strategy
In this case. ; represents the probability of the space of the organization, So. is determined as the
organization asking the wron; decision, i.e., the direct son of the individual MI strategy spaces:
probability of e.eor. Once the organizational form is
specified, the total processing activity 0 and the a a
value of organizational performance 7 can be expressed so - SL S S*0 ... Go5 (6.8)
as functions of the Internal decision strategies-.
selected by each decisionmakor. Let an internal whr deosteididniD sraey pc.
strategy for a given decisionnaker be defined as pure. The dimension of So is given by
if both the situation assessment strategy p(u) :and the
response selection strategy p(vti) are pure, i.e.. an
algorithm fi is selected with probability one and anN
algorithmhk is selected also with probability one - dim So (n,-I)
when the situation assessed as being 3: i

Dk -(u.i-1 pv-li)-1) (.) Thus. the organizational strategies or* elements of an

s-dimensional closed convex hyperpolyhedron.
for some I, some J. and for each aelement of the
alphabet Z. There are a possible pure internal As A ranges over So. the corresponding values of
strategies, the performance Index I and the activity or workload

of each individual organization member can be
computed. In this manner, the set S* is sapped into a

a - U1VN (6.3) locus on the N+l dimensional perfo pance-workloa4
sPace, namely the space (Y,02,5...0) Note that

whoe Uistheamer f falorihm IntheSAstae, only the Internal processing activity of the
wher U s te nmberof alorihms n te S stge, deoiaionnakers is presented in the locus and not thc

V the number of h alljorithm in the RS stage and M the toa acity fth ssemwch nlds th
dimension of the set Z. All other internal strateies activity of the decision aids, data bases. &and other
are mixed 1141 and are obtained as convex coubinOtliona components of the supporting C' system. Consequently,

of prs srateies:the bounded rationality constraints become hyperplanos
in the performance-workload space. Since the bounded

Mrationality constraint for all 111's depends on v, the
a admissible Internal decision strategies of each DU

D(pk- p D~ (6.4) will als- depend on the tempo of operations, The

k-i unconstrained case can be thought of aso the limiting
k-l case when v 4-.
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The methodology for the analysis of (Q.7.v). A typical plot from a three NI example [31 0
organizational structures allows for the formulation is shown in Figure S.
and aolution of two problems: (a) the determination
of the organizational strategies that minimize J and
(b) the determination of the set of strategies for
which I S .The first problem is one of optimization
while the latter is formulated so as to obtain
satisficinj strategies with respect to a performance
threshold J. The satisficing condition also defines a 6
plans in the performance-workload apace that is normal

to the 7 axis and intersects it at 3. AXI points on 15
the locus on or below this plane which also satisfy
the bounded rationality constraint for each to

decisionmaker in the organization define the set of . 0.
satisficing decision stratesi3a. Analytical 0 . 03 4 05

properties of this locus as well as a computational
approach to its efficient constraction have been -
discussed in 12,3,11).

A qualitative evaluation of an organizational 8. Mutual consistency meacure Q versus 3 and T.
structure cass be made by comparing the performance-
workload locus to the space defined by the satisficing
and bounded rationality constraints. In the sane 7. CONCLUSI'ONS
manonr, alternative organizational strutures can be
compared by considering their respective loci. Am analytical approach to modeling organizational

structures for teams of decisioumtkers supported by
Since individual decisioumakers select their own ooomand. control, and coomunication (C3) systens has

decision strategies independently of all other been described. The integration of n-dimensional
organization members, a particular organizational form information theory with the data flow scheme "rovides
san yield a broad range of performance as illustrated tools for describing the a,'tivities and interactions
by the loans in the performance-vorkload space. The within each decisionsaker model, among decisionmakers
designer must assess. therefore, the likelihood that and between a decisionmaker and the supporting C-
strategies whica lead to satisficing performance will system. ?Thilt only synchronous processing with ,
be selected. A possible measure of this mutsal acyclical information structures has been considered
Wovsisteacy between individually selected strategies in deta.l, the approach shows promise for the modeling
nam be obtained by comparing the locus of the and analysis of asynchronous information processing
satisficing strategies to the locus of the and docisionnaking. Furthermore, the introduction of
organization'a strategy space So. Let Rl be the memory in the decisioumaker model, and data bases Ir.
eubspaces of organization strategies which are the organizational structure hWs broa4ened the e!'.a,.
feasible with respect to the bounded rationality of organizations and tasks that can be analy;&'. sing
constraint of each DI, i.e.. this approach. .

a (A 1 G£(A) _1 (6.9) gV8. A WNO E.ED. .T

This paper is an overview of a research program

an lto cataa ' thhoed s g that is being carried out with the participation of
several students. The contributions of K. L.

"Doettcher. 0. Chyen. S. A.. Nell and D. A. Stabile are ,
- (A l•(A) 5, I (6.10) gratefully acknowledged.
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A MODEL FOR ASYNCHRONOUS DISTRIBUTED COMPUTATION :

Dimitri P. Bertsekas
Laboratory for Information and Decision Systems

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology " "

Cambridge, Massachusetts 02139

Abstract Processor network environments for which weakly ..
_r. coordinated distributed computation seems partictilarly

--We present*.an algorithmic model for distributed advantageous typically possess one or more of the fol-
amputation of fixed points whereby several processors lowing characteristics all of which involve occurance
articipate simultaneously in the calculations while of some type of unpredictable event.
xchanging information via communication links. We--".
lace~essentially no assumptions on the ordering of 1) Computation nodes and communication links are
omputation and communication between processors there- subject to frequent and/or unexpected failures. (For , ,
y allowing for completely uncoordinated execution. w- example packet radio networks).
id that even under these potentially chaotic circum-
tances it is possible to solve several important 2) Computation nodes have different and/or time vary-
lasses of problems including the calculation of fixed ing speeds of execution. (For example each processor
oints of contraction and monotone mappings arising in is assigned to a perhaps time varying number of tasks

inear and nonlinear systems of equations, shortest involving computation loads which are not fixed a
ath problems, and dynamic programming, priori).

I. Introduction 3) Computation at various nodes is event driven.
(For example in data collection or sensor networks

There is presently a great deal of interest in where the timing, and ordering of measurements may not
istributed implementations of various iterative algo- be predictable.).
ithms whereby the computational load is shared by
everal processors while coordination is maintained by It is possible to consider various degrees of co-
nformation exchange via communication links. In most ordination in different types of distributed algorithms.
-f the work done in this area the starting point is An interesting question is to determine the minimum
ome iterative algorithm which is guaranteed to con- degree of coordination needed in a given algorithm in
'erge to the correct solution under the usual circum- order to obtain the correct solution. To this end we
tances of centralized computation in a single proces- consider an extreme model ot uncoordinated distributed
.or. The computational load of the typical iteration algorithms whereby computation and communication are
.s then divided in some way between the available pro- performed at each processur completely independently
:essors, and it is assumed that the processors exchange of the progress in other processors. It is perhaps ' 4
ill necessary information regarding the outcomes of the surprising that even under these chaotic circumstances
:urrent iteration before a new iteration can begin, it is still possible to solve correctly importment

classes of fixed point problems. The complete analy-
The mode of operation described above may be term- sis is given in [2] for broad classes of dynamic pro-

!d synchronous in the sense that each processor must gramming and in [3] for more g-aeral fixed point pro-
:omplete its assigned portion of an iteration and com- blems involving contraction and monotonicity issump- e ,
iunicate the results to every other processor before tions. Further related work is [5] and [6]. . .. .
Snew iteration can begin. This assumption certainly
,nhances the orderly operation of the algorithm and 2. A Model For Distributed Uncoordinated Fixed
Ireatly simplifies the convergence analysis. On the Point Algorithms
)ther hand synchronous distributed algorithms also have
some obvious implementation disadvantager such as the -the fixed point problem considered in this paper
iced for an algorithm 4nitiation and iteration synchro- is defined in terms of a set X, a class F of functions
lization protocol. Furthermore the speed of computa- mapping into the extended real line [-o,.o}, and a
tion is limited to that of the slowest processor. It mapping T which maps F into itself. We wish to find
Ls thus interesting to consider algorithms that can an element J* of F such that .- .
tolerate a more flexible ordering of computation and
:ommunication between processors, Such algorithms have J* - T(J*) (I) 9
so far found applications in computer communication
setworks like the ARPANET [1] where processor failures or equivalently
are common and it is quite complicated to maintain
synchroaization between the nodes of the entire network J*(x) - T(J*)(x), V xcX, (2)
as they execute real-time network functions such as
the r'uting algorithm, where Jý(x) and T(J*)(x) denote the values of the func-

tions J* and T(J*) respectively at the typical element
xcX. We will assume throughout that T has a unique * / ' /

"This research was conducted at the M.I.T. Laboratory fixed point J* within the set F.
for Information and Decision Systems with partial sup-
port provided by the Defense Advanced Projects Agency We provide some examples:
under Contract No. ONR-NO0014-7S-C-1183.
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Example 1: (Fixed points of mappings on Rn). Let X obtained from the latest computation to one or more
be the finite set nodes j (j0i). In the idle state node i do,.s nothing

related to the solution of the problem. It is assumed
X = (1,2,...,n}, that a node can receive a transmission from other

nodes simultaneously with computing er transmitting.
and F be the set of all real-valued functions on X.

Then F can be identified with the n-dimensional space Rn
in th.. sense that with each JCF we can associate the n-
dimensional vector J(1), 3(2),. J(n). Similarly T(J) We assume that co.putation and transmission for each
can be identified witn the n-dimensional vector T(J)(l), node takes place in uninterupted time intervals [tl,t 2 '
... ,T(J)(n), so the fixed point problem (I) amounts to wit2 t < t 2 , but do not exclude the possibility-
solving the system of n equations 1 2.

that a node may be simultaneously transmitting to more
J* = T(J*) or J*(i) = T(J*)(i), V i = . ,n than one nodes nor do we assume that the transmission

intervals to these nodes have the same origin and/or
tzrmination. We also make no assumptions on the

with the n unknowns J*(1),...,J*(n). It is also evident length, timing and sequencing of computation and trans-
that any system of n (possibly nonlinear) equations mission intervals other than the following:
with n unknowns can be formulated into a fixed point
problem such as (5). Assumption (A): Theie exists a positive scalar P such

that, for every node i, every time interval of length .-.

Example 2: (Shortest path problems). Let (N,L) be a P contains at le&st one computation interval for i and
directed graph where N = 11,2,...,n} dcnoLes the set at least one transmission interval from i to each node
of nodes and L denotes the set of links. Let N(i) j 0 i.
denote the downstream neighbors of node i, i.e., the
set of nodes j for which (i,j) is a link. Assume that Each node i also has a buffer B.. for each j i1

13
each link (i,j) is assigned a positive scalar a.. where it stores the latest transmns%4 c,. troo j, as
referred to as its length. Assume also that 13 there well as a buffer B.. where it stores its own estimate
is a directed path to node I from every other node. 11
Then it is known ((4], p. 67) that the shortest path of values of the solution function for all xcX.V The
distances J*(i) to node from all other nodes i solve contents of each buffer B.. at time t are denoted J... it
uniquely the equations. 13 Y

Thus j.,. is, for every t, a function from X. intoJ*•)=min (aij + J*(j) i#I(a _•t

IalMi) ) (4a) and may be viewed as the estimate by node i of
the restriction of the solution function J* on X"

J*(l) = 0 (4b) available at time t. The rules according to which the

functions J. are updated are as follows:"
If we make the identifications X = (1,2,...,n), F: Set 1j 3

of all functions mapping X into [0,.)], and define 1) If [tlt 2 ] is a transmission interval from node j
T(J) for all JCF by means of 21'Al

to node i the contents J3. of the buffer B.. at time
Imin {a.. + 3(j)) if i j 1 5)333j 1N(i) tI are transmitted and entered in the buffer Bi.. at

T(J)(i) = time t 2 , i.e.
0if i =I"= "

then we find that the fixed point problem (2) reduces J3. = J (6)
to the shortest path problem. 1i .3

The shortest path problem above is representative 2) If [tl,t 2] is a computation interval for node i
of a broad class of dynamic programming problems which the contents of buffer B.. at time t2 are replaced by
can be viewed as special cases of the fixed point prob- t2
lem (2) and can be corr'ectly solved by using the dis- the restriction of the function T(Jr1 ) on X. where,
tributed algorithms of this paper (see [3]). •

for all t, Ja. is defined by i e

of a collection of n computation centers (or proces- tJ tW if xCX
sors) referred to as nodes and denoted 1,2,...,n. The . x,. '
set X is partitioned into n disjoint sets denoted jt( (7)x, ..... xn i.e. i :::: ' :

nJ (x)W if xCxi, j i .- '-49
X n Xi, Xi /-%X. = 0, if i $ j.i In other words we have

Each node i is assigned the responsibility of comput- t 2  tl 1.. -. -
ing the values of the solution function J* (c.f. (1), 3 .. (x) = T(Ji )(x), V xcX. (8)
(2)1 at all xCX1 .

At each time instant, node i can be in one ofthree possible states compute, transmit, or idle. In 3) The contents of a buffer Bii can change only at S
the compute state node i computes a new estimate of the end of a computation interval for node i. The
the values of the solution fiction P* for all xFX.. cbontents cf a buffer B. ., j J i can change only at the

In the transmit state node i communicates the estimate end of a transmission interval from j to i.
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Additional conditions under which ther holds

is JiCI) UJ*(x). V xcXi. i 1 ,...,n (9)

a~y be found in (21, (3). An inte,!estiiig aspect of
-esults of this type is that they do not require that
:he initial processor buffer contew's be identical and0
indeed these initial conditions can vi.y within a
vroad range. This means that for problems that are
ieing solved continuously in real time it is not neces-
,ary to reset the initial conditions and resynchronize
:he algorithm each time the problem data changes. As
tresult the potential for tracking slow variations on
:he solution function is improved and algorithms imple-
sentation is considerably simplified.
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A UNIFIED APPROACH TO MODELING AND COMBINING OF EVIDENCE THROUGH RANDOM SET THEORY

I.R. Goodman

Surveillance Systems Department, Code 7223,

S Naval Ocean Systems Center, San Diego, California 92152.
6. .. .- .* . o .

Abstract. It has been shown in previous 'o,,k that generalized fuzzy set theory and infinite-
valued Togic provide c systematic approach to the modeling and use of both natural language
and numerical/statistical infordation which occurs in the tracking-data association and re-
lated problems. This paper contitues efforts In establishing connections between these disci-
plines and classical probability theory. It has been shown that over discrete spaces, prob-

abilistic concepts are all special cases of generalized fuzzy set ones. Conversely, many
fuzzy set systems can be shown to be natural extensions of ordinary set operators through I-
isomorphic-like relations with corresponding random set representations via one point co-eraqe
functions.Among the new results presented here, it is nhown that any fuzzy set membership
function has naturally copatible r5,,'am set and random variable representations. In the
latter case, the membership function is the same as the evaluation function of the (non-
unique) corresponding random variablo over a suitably chosen collection of compound- aOd,
in general, overlapping, sets or cvents. An application to the classification problem is
presented.

INTRODUCTION individuals. 1r, see the Lin~leymparaeox" discussionsbotween Dempster-Shafer and BayesiAm backers 18). ,,,• .
Although some investigators in the field of cognitive Polemecs asidem techr- ques an ll have to be developed
rationality have cor to the concldsion that rational Poeisaieasehiuswl av ob eeoewhich in some reasonable sense model uncertainties as
decision making by humans is unobtainable [11, it is faithfully as possible so that applications to decision
the optimistic belief of many others (see.e.g., Cohen Nuking my be carried out on both the basic intutte
i2]) that intuition, properly systematized, can serve level and normative rigorous level, as discussed by
as a basis for the choio' of a normative thteory of Lindley and Brown in the reconciliation of incoherent
decision making. In turn, the latter depends critically d
upon which fundamental theory or theories of uncertain- data [9].

ties and beliefs to accept. Fine (31 considered vari- Random set thecry and its modifications (such as through
ous approaches Involving classical and subjective equivalence classes of random sets) could well provide -

probability theory with underlying emphasis on model- a k.y to a meaningful analysis of the myriad approAches
Ing random varia.,les rather than random sets. More re- to the modeling of uncertainties by the establistient
cently, Freeling 141 has analyzed some nonstandard of mathematically rigorous relationships between the
models, including upper and lower probabilities and theory of deroeption, netural language descriptions,
the Dempster/Shafer theory of belief, Zadeh's possibil- ;ultivalued truth and set theory, and the many schools
ity theory, Cohen's inductive probabilities and second of thought. The intuitive basis for the use of randum
order Bayesian probabilities, as well as Shackle's sets appears onl) slightly more complicated than that
eegree of surprise approach. However, without a single for ordinary random variables. Indeed, as the new rr- 0
basis which can be used for comparisons, Freeling has sults of this paper show, there is a natural relation-
not been able to demonstrate any deep structural rela- ship between random set and random varieble representa-
tionships among the various schools of thought. and tions of fuzzy set membership functions.
consequently, comparisons are limited quantitativrly.
Manes [51 has proposed a formal axiom system for model- SUVAARY O PREVIOUS RESULTS
ing uncertainties which generalizes Zadeh's original
fuzzy set theory and is based on the Kleisli category In this section a brief description of previous results
theorem for monoids. (However, it does not capture a relating r-,adom set theory and fuzzy set theory as well .
large class of generalized fuzzy set systems-see [61., as other areas is presented. For basic definitions and
In addition, Manes' system extends Dempster-Shafer, background, see rhol,tl],r121,[71,.13J
topological neighborhood, credibility, and other
theories.But acain, it must be emphasized that this Theorem 1. L71, [10]
general theory is considering formal similarities of Any fuzzy subset A of ordinary set X has,in general.
various uncertainty approaches, not their internal many one point coverage equivalent rcndom set represen-
structures and their relationships to each other. in tations S(A), where S(A is a random subset of X.That is
addition, there is the ongoing controversies between S

the proponents of the various approaches viewed some- #A(x) - Pr(xcS(A)) ; all xcX. (1)
what parochially from their respective stands. For
example, see Goodman (7) for a listing of argumenta- Two examples of this include the nested random sa t Su(A)
tions between fuzzy set adherents and Bayesian oriented and the very broken-up random set T(A), where
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YA:X 10.11 is the membership or possibility function 0 or~truth({xcA)&(xef-~y)))),
for A and Su(A) 9 #A-*[U,1J a (2) Xei

while the random membership function for T(A) is a %r * (truth(xcA) truth(xtrl(y)xeX

\T(A) - (#T(A)(x))xciX (3) a Xr(#&(#A(X),-f-)(X)
where ei.,h *T(A) (x) is a statistically independent orIfC()(X
zero-one random variable with,for all xeX a Cr(#Anf*f.y)(X))

Pr(,.(A)(x)-1)u*A(x);Pr(*T(A)(x)uO)1--A(x). (4) xcX

Conversely, any random subset S of X has for its one " rf-ry) x
point coverage function Pr(xcS) as a function of x, a
possibility function for some corresponding unique fuzzy Note that when F-F' (see Theorems 5(e) and b(b)), tne
subset A of X. above result reduces to the classical form for the

Thus the fuzzy subsets of a given space X partition it transformation of probability under f.(See also [131.)
into disjoint and exhaustive parts, each part corres-

* ponding to all random subsets of X having a commn one Extendirg the concept of a single one point equivalence
. point coverage function: the membership function of map-as are S and T, among otters- is that of a choice

any fixed fuzzy set. * function famVly. This is a collection of identical maps
S from the collection of all fuzzy subsets of any space -

Theem 2.E1OI ;A that of all random subsets of the same space, such

S nd T as mappings from the collection of all fuzzy that for any spacoc Xý,..Y., and any fuzy subsets A1,.

subS e of a givengs ino the collection of alln of X1 ,..,X , reipect'vely, the correspondino.' s(bsets of a given space into the collection of all one point equivgilent random subsets S,(A1),•(S,(An) "
random subsets of the same space induce isomorphic- om t

- like relations between various fuzzy set operators and have a well-defined distribution, or equivalently, form
corresponding random set operators-i.e., ordinary set a well-defined joint collection of random sets. Two
operators on random subsets of the same space. For Important such families are - SI (SU )J.a12,..,where .
"example, where %% indicates one point coverage equival.: Ur,U 2,.. form a J-copula stochastic prcess 1101 and• "f(Su(A)) -•Su(f(A))!tf(A) (5) 1920.. )$(f(S formed from repetitive applications of %& , a semi-

,• Su(A)USu(S) • %(AU) *AUB (6) distributive t-normElO].

Su(A)fnSu(B) W Su(Afno) %AMB (7) Theorem 3. E101,113i,353

X-4Su(A) o SU(X4A) m XA (8) Theorem 2 can be extended in a naturaT way for the two
choice function families desrribed above.

SproJ(Su(A)) _- Su(Proj(A)) - proj(A) * (9) However, it can be shown that there exist fuzzy set oper--
Slf s,,•t4 A . of sphCC. ations which have no random set representation through

" Indeed. SU possesses even stronger properties in that any possible choice function family. (See [131.) lever-
* the left- sided ecuivalences can be replaced by actual theless, all of the basic fuzzy set 'oncepts and their
.*. equalities for eqs.(5),(6),7), and (9). Similar results generalizations, including systems F , F , and many

hold for T(-) , but without any of the stronger replace- others, have complete random set repPeseftations.(Again.I ments of one point coverage equivalence by equality. see f131.) If a fuzzy set operation has a random setIn the case of SU v the fuzzy set operators for func- representation. then that representation must be the
tional transform f:W P.Y, unions U, intersections n, .tah
complements X-4q , and projections, involve the fuzzy restriction of the fuzzy set operation to ordinary sets.

set system F =(# , ,t )-(1-(.),min,max), for comple- Theorem 4. E101.[31,[]Sment t on, I~teW ~r r.T~H and union. In the case-of T,mentae zyeton, systerqe~ and-union. Indrbs th s casedf Given any choice function family and-any ordinary (n- .. "
the fuzzy set system F,(1-(-.)prodPprobsut) Is used ary) set operation, there exists a unique extension to
for all definitions. U fuzzy sets such that a random set representation exists

- More generally, fuzzy set system F-(n consists relative to that choice function family. In particular.
nt*&**orthe application to binary compositional set operations

of a triple of operators, the first being an Involution, te a n e oebutaby c lass ofex tions.the ecod, t-orm an th thrda tconrm lO][i• generates an easily computable class of extensions. •"
the second, a t-norm. and the third, a t-conorm [1O1,Cl41
Based on tnfinitely-valued set theory, ordinary set One of the chief difficulties in carrying out random
"and logical concepts valid in classical set theory and set representations and Interpretations of fuzzy sets
classical logic may be extended to a fuzzy set form, and their operations Is the non.uniqueness of corres-
for any choice of fuzzy set system. For example, con- pondence. In general, infinitely many raddom sets can
sider as above f:X - T and any ycY and any fuzzy subset (one point coverage equivalence) represent a given
A of X : fuzzy set. One method of selecting a single random set

*f(A)(y) - truth(ycf(A)) representation is through the measure of entropy:

-truth( x)qxcA)&(y=f(x))) Theorem 5. 161)
*truth( OrIcA) 6(xcf'(y)))) Consider any fixed discrete space X. Then

xCi (a) The collection of all random s"Lsets S(A)

""truth( Or(xcArlf-1 (y))) representing A can be characterized as being in a
dxo hijective relation with a simply describable con-

" or(truth(xcAf- 1 (y))) vex line tyboundet subspace R(A) of Rc .here"or c d 2car I.- crd(X).
xC" (b) The maximal entropy random subset representing

"A is T(A).
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(e) The minimal entropy random subset represent- completion and union of a class of natural imbeddings
Ing A occurs in a collection of random'subsets which of various forms of Zadeh's fuzzy set theory for multi-
is bijective with the vertex set V(A) of R(A), a ple memberships [=3 ,C21]. Apropos to multiple point
relatively sparse set. membership of fuzzy sets, Theorem 5 (a) has been ex-

tended to the characterizations of all random subsets
S(d) There is only one nested candom subset of the of X which are multiple point coverage equivalent to

space representing A, namely S,(A). (This result is a given multiple point membership function, up t• ..iy
true for any space X, discrete or not.) Su(A) al- prescribed multiplicity level [111.
ways lies in the class bijective to V(A), although
it Is not always necessarily the minimal entropy Finally. we mention the fumdamental result previously
representation. obtained concerning how evidence should be combined.

"(e) Note first, that all probability functions Theorem 7. [1Y1,1201•:[161,for asymptotic properties.
and all cumulative and reverse-cumulative probabil- Given any collection of fuzzy subsets Al,..,A of a"ity distribution functions,for ordinary and defici- space X describing some common unknown parameter
ent probability measures, are fuzzy set membership vector, for each choice of non-decreasing combining
functions. Let A be any fuzzy subset of X with mem- function g:[O,1]. (0,11 with respect to any confi- "I bership function # which is a probability function. dence levels of the corresponding level set forms,
Then,that ramudom sObset of X which is the singleton- there Is a unique single fuzzy set description of the
valued one formed from a random variable having #A parameter which minimally contains the information
as its probability functionrepresents A and lies liven by A ,..,A. This fuzzy set A is determined by
In the class bijective to V(A). although as In (d), the equatinn (11)
it does not always possess the minimal entropy. )x)) ; all xzX.

Some~~~~ ~ ~ ~ miclaeu*eslsaeAmrie et ,(x) f 9(4A I W....4 An );alx
"- Some miscellaneous results are sumnarized next. By noting that any t-norm satisfies the conditions for
Theorem 6. g in the above theorem, an application may be made to

(a) A general fuzzy set version of the Law of Large a large class of data association problems, where It
Numbers has been established (17i. %For a fuzzy set can be shown that the fuzzy Bayesian solutions of the
version of the Central Limit Theorem, see [IS]. ) problems coincide with the combination of evidence

"(b) Conditional fuzzy sets may be defined anala- approach determined by eq.(11). (See the remarks in
gous to those in classical probability spaces over Theorem 6(b) concerning the PACT algorithm.)
discrete spaces (171, in turn, yielding a fuzzy set
form of Bayes' theorem for general fuzzy set systems FUZZY SET MEMBERSHIP FUNCTIONS AS EVALUATIONS
F [13J.]71. This may be used to develop, from first OF RANDOM VARIABLES OVER COMPOUND EVENTS
principles, a decision theory based upon fuzzy set
"concepts. In particular, fuzzy set member-hip func- The 'results of the previous section point out that all
tions may be used to model error distributions of fuzzy sets have (in general, many) random set one point
attributes and inference rules connecting groups of coverage representations and that the most common fuzzy
attributes with parameters of interest. The rules set operators also have isomorphic-like random set op-
can include statistical tests of hypotheses convert$, erator correspondences (under the one point coverage

Stinto fuzzy set form by considering their random sig- relations). In this section, we present a dual result
nificance levels as fuzzy set membership functions with respect to random variables over some initial
of the test statistic values. This information my elementary event space. It Is first shown (Theorem 8)
then be combined with observed data to yield a post- that given a random variable V over a space X and given
erior fuzzy set describing the parameters of Inter- any collection A of compound events from Xi.e., A is
"est. (See 1201, 1211 for applications to the target A collection of subsets of X lying in the a-algebra on
data association problem-PACT algorithm.) When all X, a random subset S of A may be constructed such that
fuzzy sets involved In the decision problem are also not only is the one point coverage function of S tne

j iprobability functions and the system F=F'u same as the evaluation function for V over A, but also
(1-(.),prod,bndsum) is chosen, then all of the above that the structure of S is natural with respect to V,
results reduce to ordinary probabilistic ones. i.e., any outcome of S is the filter class of A over a

corresponding outcome of V. The next result (Theorem 9)
(c) Characterizations have been obtained for ran- shows the converse: given any random subset S of any

dam interval representations of fuzzy sets [16]. given collection A, an elementary event space X for A
(d) The Dempster-Shafer theory has been shown to may be constructed as well as a random variable V over

be completely analyzable through random set theory- X such that the situation in Theorem 8 holds. The con-
in particular, by use of Choquet's Capacity theorem struction, in general is non-unique. Finally, these re-
concerning subset, superset, and incidence functions sults are combined with Theorem 1 to show that any fuzzy
of random sets as extensions of the usual properties subset of a space my be represented dually (in many
of probability measures in expanding in alternating ways, in general, depending on the choice of S) by both
sums,unions of events in terms of intersections, and the evaluation functlon of a random variable over com-
vice-veisa.(See [111,[71.) pound events and as the one point coverage function of

"e) Although Eytan's claim that Zadeh's version of a random subset of the same space, with the random
fuzzy set theory, considered as a formal category, variable and random set in a natural relationship, as
has been pointed out by Pltts, Carrega, and Ponasse mentioned above.
"not to be a topos (see (22],[23),[24])
"(as discussed in 125)) promises to be a WIgsuopos First a basic lemma and definitions are presented.

medium for extending the concept of membership in a Lemma and Definitions.
fuzzy set to simultaneous membarship of several Let X be any space and Ar.P(X), the class of all ordin-
points (in a Higgs set) since:a sound and complete ary subsets of X. Let V-A- X be any random variable
intuitionistic logic can be realized through the relative to probability space (2,CPr) and some measur-
"topos', it Is a natural extension of the concept of able space (X,B) inducing probability space (X,B,PrV-I)

* a set, and indeed a fuzzy set ( for single point with a-algebra 82A.
membership) and Is conducive for axiomizations
(although see Goguen's earlier axiomizaticn of Let S: 0 + P(A) be any random subset of A relative to

. Zadeh's fuzzy set theory as a category ý263 ) •an6 measurable space (rng(S),o(S)). rngo) p(A),generated by
finally. it can be shown to be the quo lent object
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G(S) (C a(rn.) a A) (12) and similarly for •, yielding immediately

where the filter class of rnP on point a is given by In addition: Pr(Y c T) - Pr(a t S), all a c A . (25)

C(a (rn90) d (B I a c B crngN} , (13) (1) A must always satisfy-and therefore may be de-

for any a c A. Mcre generallythe filter class of rno fined by, once V and X are determined-
over any C c P(X) is given by *V(S-(c(a (rn-))). all a c A. (26)

C (rngF) 8 1 S j CSe 8 rngo . (14) (11) One choice of V and X Is:

V d s , X d rmg(S), (27)
(See t13] and (281 for background in random sets.) in which case A reduces to
Thus S induces probability space trng(S),0(S),Pr.S-I). n.

C (rno). ll ae A.(28)
Then: a (Ca)~r~.alaaA

V'(a) - S'1 (C (rng)),all a c A (IS) (iII) The general solution for V and X (and hence

1ff (a) A via eq. (26)) is constructed as follows:
S(W) - C{V( )}(A) . all w e a (16) From the lemma (5) for each B c H let

which mutually imply V8 : S- (FB) - Xe (28)

Pr(V1l(a)) - Pr(S'(c~ a(rngg))) * (17) be arbitrary surjective (and measurable), with 'B arbi-
i.e., a trarily chosen non-vacuous set such that all X are

Pr(V c a) - Prt. c S) I all a c A. (18) disjoint. Then define

In addi.ion, for any collection of sets such as G(S), a X d tiX, (29)
baSis -GS) may be formed as follows: BCHl

(1) Let A' A be such that Cis a one-to- and define V: - X by: for any uw c 1, there is a unique
one function of a e ' yet B(W) H such that w z S" (B.),whereupon define

G(S) - ( C{a}(rngN) a c A'). (19) V(.) d .V.(W): all a afi . (30)
(2 Fo an-..PA) dfn
(2) For any B £ p(A'), define (iv) It follows from (iii) that the smallest-by

RS CD(rng))-, U Cc{ai(rn9". (20) subset inclusion- possible space X satisfying the re-

acAB qired properties is of the form
(3) Let X, -xB I Ba I}, (31)

.(3)Let 4'S) d { B1 B £ H I , (21) where each xp represents a point which is distinct for
be the collection of all non-vacuous distinct (and hence each B.
disjoint) H. 's, noting that H SP(A) may be non-unique. (v) Finally, note that in (ii), * B * for

(4) It follows that'g(S) forms a (disjoint and ex- all B e H .
haustive) partitioning of UG(S), where for any a c A',

C{a}(rngo) P .3 B3 (disjoint). (22) Proofs : Using eqs.(22),(28)-(30)
• ae~cH -V(S BOe )) " C V B(S 'I(B B)) " 0 Xs (32) ':

(5) In turn, this implies tat {S-I(BB)jB C H) is andB 3 aB CH aa "L" & 332

a partitionin3 of a , where and ae) Xa" aaBalf
ands' 1 (n*) £ {s-l(C)! c a B3) v'Z () " v'(U• 3) "*I v•fx,) "l.)s'(a.)'"
and 8 (Sleseff aCBCH aecHcf ~

1s-(C) -• { I W a A 1 S(a)=C), S'(UB ae If s }(rngo))sall aA.(33)
by the usril inverse functional notation. US Bc) (a )

Theorem BRandom variables generate naturally corres- Eq.(24) is obtained from the Injective property of A
ponding random sets wase one point coverage over A' and use of eqs.(15) and (16) in the lemma.
functions match the evaluation functions of The remainder of the results follow immediately from
the random variables iver a given set of the constructions. -
compound events. t

Let V:Q - X be a random variable with A arbitrary, where Theorem 10. Any fuzzy subset of a space has both a
Arm-SP(X) as in the lemma. Then define S:D .P(A ) by random subset representation-under one
eq.(16). The lemma implies eqs.(15)-(18) hold. roint coverages, and a random variable
Theo Tem representation as the evaluation function

Theorem 9. Converse of Theorem 8: Any random set gener- of the random variable ofer me.. class of

" ates a naturally corresponding random vat- compound events, with the random subset
able and an elementary event space such that and random variable naturally related. -.
the random variable evaluated over certain L "
of the compound events matches the one point Let P be any fuzzy subset of some given A. Thus, 1
coverage function of the random set. *B:A . [0,1] is arbitrary given. Then by Theorem 1,

Let only A be given with some random subset S:0 o P(A). there always exists random sets S:R - ?(A) which are
Note the validity of the development in eqs.(19)-(22). one pofnt coverage equivalent to S. In turn, applying
Then there exists a space X (correspodl~ ng to elementary Theorem 9, there is a random variable V:n P X , with
events), a random variable V:n -* X suriective, and a V. X, and mapping A:A - P(X) all satisfying the results
mapping A:A * P(X) which is injective over A' such that In Theorem 9. In particular, this implies

(rngN)), all a c A (23) 98(a) - Pr(a c S) - Pr(V c I). all a a A. (34)

and equivalently,
A . C{( Analoues to Theorems 2,3,4 for random variable repre-

() all W C n (2.4) sentations of fuzzy sets have yet to be investigated.
"where as usual A . (; I a t A ) in functional form,
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Example illustrattn2 random variable and random set * epC xA C f A C (
resentation- of fuzzy c setofos. are d ( (A) x Cix ( (xi}
In real world app',cations. classes of obj t s a re deter -  X 1C 4 •C 5  Xo
mined by w."y factcrs where often we have no knowledge I ii' T4 5 1 TI T
of the acl•al conditional and joint probabilities in- X21(C1) X5 1(6•C, ll2 sI I c4I ixt VC3 C 5  I
volved e7-ng the factors (let alone determine all of the x3 (C3,C4, 5  (C ) :1~ (C2  x (C)
relevant factors). In such cases, it my be both simpler 3 4 a bl 4.12!3
and more appropriate to query experts directly as human Ta 4.

integrators of knowledge to obtain the probabilities or Next, let V be a random variable pver G corresponding
possibilities of occurences of t'-e classes involved and to the t.rueivalue of factor j and V a rindom variable
their error distributions. Results from these experts also over G, corresponding to the oiserved value of fac-
show apparent probabilities for these events not adding tor J, for jIjl,2,3. Suppose also that(V .V ,V )are a
up to one in general. In the past, normalization was mgtull 1 statislic lly independent tripl•, Is ire
carried out to make these values intoolegitimate prob- (VV2 1 (V ,VZ , 3 )•( V 3, and (V f2,V). Sup-
ability ones, with the implication that human error was 1'b 03 2-3' V'231 1 3
involved in the estimates which contributed to this further that the probability functions p(V 4 fj and S
problem. However, since in general. the classes -if in- p(V) . J-1,2,3 are all knm. . OLere we X e the con-prbe.Hwvr ic ngeeatecass' n ventton of identifying , where necessary, random varia- •
terest really represent overlapping concepts, and not besan ofeiren i ty . enecessarhro m varia-

disjoint events, the computed values should not be ex- bles and their probability functions through their typ-

pected to sum to unity. Hence, a fuzzy set membership 3cal outcomes. Define random variable Vd(y1,Y2,V3) .
(or possibility) function is more appropriate than a corresponding to the true joint fac r vaiuel determin-
classical probability function model. Indeed, Theorems ing the true class, and similarly, 1(tV 3) for the
8-10 make this idea more rigorous:the experts' respon- observed (or reported) class. Then It f;lllws that: I
ses (suitably averaged) form the fuzzy set membership p
function which is the same as the evaluation function p(V I V C Ck)
of a (non-unique) random variable representing the p1t * o) / 3(('p~•Ijt) .p(v -t -•jt (3:,, "i

actual elementary event space of all factors evaluated tGjk -1
at those compound events of that space which corres- k ;""
pond to the classes considered. The evaluation function and
may also be interpreted as the commonalities or one p(Cm is trueiCk is observed)zp(V Cm1VcCk]%(CmI£Ck) .
point coverage function of a (non-unique) random subset I

of the set of all classes- the random subset represent- pr(•. (¥ lvt)'p(;l.t) / tIJ p t)-
ing the possible interactions of the classes. ( Va t-

First, for simplicity, consider the situation described jtG . )k (36)

in T;,eorem 8:no experts used and all prob. values known: '"

Let G {ab,c), G29(.III). G A (1,2), be the domain Thus, p(Cm truelCk observed) is a computable function of

sets of the only factors considered for possible class- C for each C in A and may be interpreted as the fuzzy
es. For example, G• could represent lengths, G,, weights s~ t membershit function or possibility function B for
(heavy. light),andiG , shapes (of type I or type 2). possible choices of which class gave rise to the obser-
Define then the clasies C ,C by the following table: vation C for any fixed k . k-1.2...,6. These functions

Classles ~* * G 6 aue ar g~ne~ated by the conditional random variables.
Class G G values Gvalues G3,=G3 values (V I £ Ck) evaluated over the collection of compound :"

for C for C for C events A. in turn, the possibility functions *# are
j Ji also repregentcaas the one point cuverage functions of

CG I aib I 1,2 the random subsets (S I V c Ck) of A which represent

C2  bc I the possible Interactions of the classes k-1,2,.. •6
Here, for any k, a typical outcome of (S c C is 1

C3  a,c II 1,2 some c€x )(A), the collection of all classes C1 , C2 ,.C . a ~ b 1 ! 1 ,2 1 " '
a such that they interact with respect to x I i.e.. con-

C5  a,bc 11 i tamn xj. Table 4 presents the ten distinct sucf collect-

C6  c K 2 ions of classes making up the range of (S I r Ck)
Table 1. The probability function for this random subset is ob-Stahed from eq.(16). Some of the values (see Table 4 ) 4

Define the following elementary events-possible triples f. S

of values from G1•G ,G6 that determine the classes: P(S((C 1 } I Ck) P ( p(V'xi V ' Ck)0
29 3 1-1.2 16

X1-(a,1.1) xs.4b,11 2) x7.(bii,2) x10 .(c•I,2) P(S({C3,C4,C5 ) I e C( - P(V-x 3 I , Ck).

x (aI,2) X5 (b9I19) X, -(b,11,2) X116(c,II,1)354 k3 cCO

3' F,) x(c.I1) x12 2(c C3 4  k Ck) p(Vwx4 j V CCk)

,us can taoulate ` or eac s w-ich elements are P(l' Ic 2 ) Ck * $Vx V•) c .CO
in ittand~conversely, for each element.which classes p(S(C 6 I C C) 0  C etc., (37)
contain It: which may be evaluated through eq.(35).

Class C Elements in C, Class C Elements in C Now consider the converse of the above situation-where

x x x here Theorem 10 is appropriate: We know the classes of
1 1c relevance A a (C C I but we do not know all the

2 x5  9C X30x7 1 contributing fadlors aid/or we do not have a handle on
C2  x5" x9  C5  x3 ' x 7 , x 1  all the required probability functions involved in the 4
C3  x3, x4 ,X 111X1 2  C6  x10  factors; but we do have before us a pane' of experts

Table 3. who will give the possibilities of true cl&ss values

Here, X(x 1,x 2,..•x )12 I A.{C1 •..•CG}SP(x , and given observed ones. To simplify notation, assume that
•2 6 a particular C is chosen and all results, as above,

the collection of all classes containing xj is C{xj)(A). are condition •d upon the event V C Ck- Suppose then
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tepossibilities of a particular class being the true 1.OKhea .v rEERENCSujciepoa ltyaug
one given Ck is observed, is determined by the panel meD.anema of rer nA.Tveresky,'Subjectv poahility72 ajudg-4
to epresent in effect the fuzzy subset B of A which is 2mn frpeettvns"o.~~317)404 4

gvnto rug th mebrhp(rpssblt fnto L.J.Cothen,'Can human irrationali~ty he exioerimentally
Aiv 01,weewthruhtemmesi (out lossiofgeerlity) ucin 2 demonstrated?',Benav.& Brain Sd .4(1981) .317-370.

48~~~ ~ ~ ~ ~ : A-,0,1.1weewtotlsofgnrlt 3) ..T.L.Fir~e,Theories of Pr~oba-bilit-YAcad.Press,N.Y..1973.
0 *9(C1) I' (CZ) < . B(C6) -14. A.M. FreelingI Alternative Theories of Belief and Im-

We first must choose a random subset S of A (such as in liai for TiTrec, econcillitilon, aný Sen-
eq.(37)-but here we do not know a priori the random var. tvt n yTie sb cec osrim n.
.iable V generating S arl #,). Guided by Theorem 1 and Tech.csio Reporte No. 81-4, Nov.,198
perhaps by Theorem 5,. by n nimal entropy or nested S. E.G. Manes, 'A class of fuzzy theories". J.Nath. Anal.
random set form requrmns choe (B). e.g. In A Eaplic.85 (1982),409-451.
this case, the probability function for S Vs, by defin- 6. I_.R. Goodm-an & H.T. Nguyen, "Uncertainty modeling and
ing for ii'1.,.,6, (~~apossibilistlc approach to parameter estimation',

C(~d %C+I-C1; *8 (C0).O(39) asubmitted to J.Nath. Anal .& Applic.,1983.
(i)7. I.R. Goodman, -'Fuzzy sets as equivalence classes of

B(= )= mC)*(m) m-1) .M . 6. (40 random sets", in Recent Developments in Fuzzy Sets
Thus~rng(S) * (C~m) Ia'1,. .,6)SP(A) and AWA with And Possibility Theory,R.R. Yager~ed.,Pergamon Press,

(1) Cm)New York, 1981, 327-342.
cC{. (rnm) -(C ,. CI (41) 8. G. Shafer,'Lindley's paradox', J.Amer.Stat.Assoc._77*
whene in u ( ~ (2) Ky. 378 (1982), 325-351.whnc (S) . ()C2..C6) 4) 9. IrV.1iown 9 D.V. Lindley, 'Improving judgment by re-

Noting here for S:tl - ?(A). we may choose a - 10.11, conciling incoherence', Theory A Decis.14(1982)113-132
with U(w) -w. for all w c a. Then it follows that 1. 10.1.R. Goodman, 'Some fuzzy set oper-ation-which in-

S-l(~m) a *(Cs()]; (43) duce hemomorphic random set operations',Proc.26th
and random variable Sm I mConf. Gen. Sys.Res.(AAAS)1982, 41-426.

(surjactiva) V ( C )eCJ* X~m(44) 11 9?. uiyen, 'ýWFrandom sets and belief functions',
(in) Sm- Sm in)JMath. Anal.& Applic.65(1978), 531-542.

with each X marbitrary disjoint nonvacuous set,,with 12.f.~Te,_Fie0_es~entatiBon theorems for L-fuzzy quanti-
(in ties', Fu zz Sets & Sys 5 (1981), 83-107.

V defined from the V Is' as in eq.(30).and Xd%,Xcin) 1 13.1.R. d'~~an,_1e ?~t T`fTcatfion of fuzzy sets with ran-
and~~~ th antv apn u )i si q(32). dom sets', survey paper, accepted for Encyclopedia of

with eq.(34) holding with a replaced by any C e A. Alstq sytm 9Con~trol M.Singh,ed.. Fergamon Press.New
all @f the remarks in Theorem 9 may be appliedmto the York (to appear, 1984).
situation here, such as choice of S-V and Xarng(S),etc., 14.E.P. Klemlent, 'Operations on fuzzy sets and fuzzy num-
as special cases. bers related to triangular norms', Proc. 11th Intfr.

SUMMARY AND CONCLUSIONS 15.5.R Good-main--aracterizations of n-ary fuzzy set op-
Natural connections have been established between fuzzy erations which induce homomorphic random set opera- -
set membership functions and both evaluation functions tions', in Fuzzy Information and Decision Processes,0
of random variables over compound events and one point N.M. Guta & E. Sanchez, eds.,Northi-Holland, Ne-wYork,
coverage functions of random subsets representing inter- 1982, 203-212.
actions. This allows.in particular, ~wo essentially e- 16 IR.Gomn 'Senwrsut cnenig adm

quialet vewsto e tkenfro a " sstes aproch sets and fuzzy sets', submitted to Info. Sci., 1983.
uncertainty modeling may be carried out in either a fuz- 17.I.R. Goodman,'Seine asymptotic prope-rtiFes of fuzzy set '.

zy set or probabilistic framework, whichever, is most systems'., Proc.2nd wol Conf. Math. Seýrv. Man, Can. .

feasible or appropriate, and that information may be is., 32I- T.-
combined within an all-probabilistic or all-fuzzy set 18. H. Dishka'nt, 'About membership function !stimation',- 0
model for further analysis. For example, in modeling Fuzz Sets & S s 5 (1981), 141-147.
natural language descriptions,often,infinite-valued lo- 19r .Gda~n, 'napoc otedt soito
gic and its realizations through general fuzzy set theo- pro'blem through possibility theo ry', Proc. 5th tUT,
ry are easier to use, rather than probability theory ONR C3 k., Dec..1982, 209-215.
directly-although all results may be translated Into the X .t~~omn'AT osbl tcapoc ocrea

lattr. or eampe, cnsier he sntece:~'Jon ~ tion and trackin' Proc. 16th Asilomar Conf.Circ.Sys.
lieves the following information must be sent to the 4m.IE) Nov. ,9TY 63
commander:over the oast 24 hours, most of the ten or so 21.1 R. Goodman,'Applications of fuzzy set theory to
detections were of gray and unusually long ships. Ten, prmtretmto n takn"Po.Ae.Ctldenoting truth evaluation by tr(e) (see als3 eq.i(10),): pameresiton nd raig'ro.Ar. nrl

uaConf. 1983, 1236-1237.- _ _
tr(S).* (tr(a),tr(b)) ; bdAmost(c is dr; X set of tgt 2.? Ti' F.z esdontfr oo' Fzy
tr(a).tMC bel. b shld. be sent to comon' Sets & Sys, 8 (1982),. 101-104.

S4blJ( (0(send *(b~co!Ie)9very(#oblig(-))))1 23.TJr tarrega-,"The categories Set H and Fuz H',Fuy
or so ?e~#i e over pst.24 hrs'ýd4d'ry. & unus.long.'! Ses& y (1983), 327-332.

For all xeX, denoting all time indices by t and tV: 24.D. Pon~asse, 'Some remarks on the category Fuz H of M.
*D(R):trrx det. over pst. 24hrsl- 0 ~ (* (x)#. tVi Eytan', Fuzzy Sets S Sy. 9 (1983), 199-204. For Ey-0

de,%'ti, tan's ontroversial-articl e, see Fuzzy Sets I Sys.5
tr(c)u # r q4 ( *& f j.tl in)) gD (1981).47-67.

c~jnpý-I25.M.P. Fourmann & 0.3. Scott, 'Sheaves and logic', Lect-
tRCc&d)ug(E). r oe nMt.N.73.Srne-elg e ok#,(x)intr(iI det.ovr.pst.24hrs.& x is gray & unus. long) ~ ueNtsi ah o 5,Srne-elg e ok

*&044 (olx)# # (lIsgth(x))]). T§970-32-1lT -
gry9r 26.J.A. Goguen,'Concept representation in natural and

This determines the conditional tr(dlc)? throu h relation artificial languages:axioins, extensions, and applica-

In turn. tr(cid) - # 9(tr(c).tr(dfc3). tions for fuzzy sets', !nt. J. Man-Machine Stud.6
tr(b) -most( tr(dlc)). (1974). 513-561.-

27.N.T.Nguyen.I.R.Goodman & W.Ruitenberg,'Additional re-
which completes the evaluation of tr(S). This may also lations between Fuz(H) and Higg(H)', to be pub. 1984.
be expressed in probability form,by~e.g. (Theorem 3) re- ?8.G. Natheron,Random Sets and Integral Geometry, John
Placing all eA(x) by Vc~y, ~y& ~ b'rec iey & Sons, -New York,17.
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Introduction Perhaps one of the most useful features is. the
C ability to compare probabilistic results which

The conventional way to estimate quantities for represent competing alternatives. Often, the expected
n.m, decision making purposes is to employ informed result (man of the probability distribution) is

judgment about the applicable estimating relationships independent of the amount of variability (spread,
(equations, algorithms, models) and the values of dispersion) of the result. It Is not unusual to find

( their constituent parameters. More often than not, circumstances where the alternative that has the
one or more key parameters are not known with greatest expected value also has the highest
certainty, and informed judgmen; takes the form of a dispersion. Greater dispersion can mean greater risk;
subjective point estimate (wguesstimatt'). Many in fact risk is often described as being directly
practitioners are content to use the resulting point proportional to some (exponential) power of a measure .. \
estimate for the result. The more diligent will re-do of the dispersion such as the variance -- the bigger
the calculation combining estimates of upper and lower the spread the greater the risk, by some
bounds of the input parameters to estimate upper and definitions.4 The decision maker may place a premium
lower limits for the result. Such dilligence is on risk reduction and may be willing to trade off
facilitated by the increasingly convenient spread expected performance in order to reduce the risk of.
sheet computational packages for personal computers. the system's not performing adequately in adverse

situations..
This paper describes software for incorporating

uncertainty directly and explicitly into the So, to take stock before moving on, this paper
calculations to yield a probability distribution as will describe a computerized method for representing
the result rather than a set of point estimates. The uncertainty explicitly in calculations concerning
software permits the user to represent the uncertain individual alternatives and for making choices among
parameters by any of about sixteen probability density several uncertain alternatives.
functions.c-._This is done with simple assignment .ork
statements lkRelated ork

'A' IS 'NOR 10 1' I credit the early motivation for the work to my •" ",
research wtth M. Granger Morgan at Carnegi.e-Mellon

which represents the parameter A as being normally. University. Morgan has made many practical
distributed (bell-shaped curve) with a mean of 10 and contributions to the art of dealing explicitly with
a standard deviation of 1. The parameters represented uncertainty in public policy issues with high .
by probability distributions rather than point technology content. He and his colleague, Max
estimates are called probabilistic variables. The Henrion, have developed a software system with similar
software combines the probabilistic variables in capabilities which they call DEMOS. They are readying
expressions almost like those involving deterministic DEMOS for general use with support from the National
variables, except that instead of using the familiar Science Foundation. DEMOS is coded in Pascal, a
arithmetic operators ( x -, x f, *) corresponding higher order computer language which is viewed by many
primitive functions like PL ("Plus", for addition), MI as a root of the new Ada language.
("Minus*, for subtraction), TI ("Times%, for
multiplication), 0I ("Divided by", for Jivision), and In other related work, Leo H. Groner of IBM7 has .
EX for exponentiation are substituted.' Thus, the been investigating a number of computerized methods
expression for pe-forming explicitly probabilistic

calculations. Some are similar to the approach I have
D-(A + B)C, taken, though Groner uses a different representation . -.

is written as of probability density functions. Much of his work is .. /
D.--(A PL B) EX C also coded in APL.

assuming that A, B and C have all been assigned Also, Bonner and Moore Associates Inc.. Houston,
definitions as probabilistic variables. And the Texas8  offer a commercial FORTRAN-based software
result, D, is itself a probability distribution rather package for probabilistic calculations. The
than a point estimate. calculations are performed with Monte-Carlo s mulation

techniques. They have named it PAUS. PAUS is
A probability distribution provides much more intended for a variety of business applicatit ns. It

information than a single estimate, or even an also appears adaptable to engineering applications.
estimate with upper and lower bounds. For example,
the P-th .entile, the value which is greater than P- My own system is n an advanced development
percent of the other possible values of the result, stage, ready for application testing. It is based on
can be found directly from the probability a nmrcl apod hc s smlr t h
distribution of the re.ult.1 Similarly, summary a numerical approach which is similar to the
statistics or graphical representatioqs of the .
probabilistic result can also be produced.J
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convolution of probability distributions. My probabilistic variable, the regular
objective is to enable analysts to systematically and mathematical operator may be used (e.g., 35 x
explicitly incorporate uncertainty into their 5).

calulaion wth miimm o se-u ovrhed.3. The statistics of the resulting distributions

An Illustration of an Explicitly Probabilistic are generated with "OSTAT" and illustrated
Calculation with TMBOXPLOT*. Also, vertical boxp lots for

t'he two results, E and F can be generated
'A samp~le problem solution will be presented to side-by-side (to the same scale) with the

illustrate both the way the software can be used arnd function UCWEPARE- lNcNeW, 1977] as shown in
the extra dimension of information that is available Exhibit 2
froim following the propagation of uncertainty through Rfrigt xii ,oese htatog
acalculation. Consider a system with two types of the fto lerr na to xiv i ,oeses haeaot the t s ameexetedug
elements with unit operating costs A and B, h w lentie aeaotth aeepce
respectively. The total system operating cost Is operating cost (as was predicted by the original point

descibedby te fomulaestimates and borne out by the medians and means of-
descibedby te fomulathe probabilistic results) alternative F has about
D - (N x A + N x B),twice the dispersion (as measured by the standard

where K is the number of units of the first type in deviation) as alternative E. So, the choice between
the system, and N is the number of units of the second the two depends on whether the objective is to
type. C is an exponent which represents the influence minimize uncertainty (E is better), minimize the -

of scale on costsieeooy Clssta 1) r highest possible cost (E is better), mi -nimize the
diseconomy (C greater than 1) of scale. lowest possible cost (F is better), or some other

objective. 'ihe sof tware includes a "mDECISION"
Imagine one system composed of one unit of the function which automatically selects the best

first kind and 35 units of the second kind. It alternative. Its use is illustrated in Exhibit 3, in
operating cost would then be: which the operating costs E and F have first been

subtracted from an arbitrary revenue of 12 to yield an
E a (A* + 35 x B)C. operating profit. This is because the decision rules

A second system alternative wit, no units of the first are designed for maximization rather than
kind and 75 of the second Ikind would have the minimization.
following operating cost:

F -(75x . 3)Exole 1: Probabilistic Inputs

The first type of item could very well be a large
central component such as a mainframe host computer
and the second item type could be a smaller remote ýA:
counterpart like a local processor. Acutal cost 06127 $ý to1
equations would be more camplIlcated, but similar In *-

principle to the illustration. 7ea.

Suppose an analyst had made (or had obtained) the
following point estimates: A 10A; B a0.24; C *0.63.

POSeIRMAs 7.7S(47 "all IE3S~ia..,4.09
The cost estimates would then have been: oft LS8zMa~m ...

E : 110 35 x):J0.6 a 6.26, and "afmDv 06.9 *.771 1W 6.0aske64VUPU?85a 8.1"%,

F (75 0. 4 *6.18.

These differ by 1.3 percent, icertainly too close a =*~um ,07

call for a clear preference.

Suppose, further, that instead of Just point 08.3
estimates, the analyst was able to encode the -. * a .

uncertainty in the estimates of the parameters with - Ia

the following probability density functions (PDFs): "s"Mrn 0.0W6 AX20U, 1~W~I.3,? A3 1.2C^).5

A-~ NORMAL (mean so10; standard deviation 1) 09^0 w~a 0~~ .040(047 $TO a BOW 0.001

.B - GAMMIA ("shape"* 2; "scale" a 7) "~'a*a3h ~~~ .57 U~S~ *3~

C - TRIANGULAR (low u0.575; apex -
0.6; high - 0.75). C:

The probabilistic parameters will yield a c~ a 55. 7

distribution rather than a point estimate for 0.6 ' 8 .7
operating costs E and F. This is how it is done with -- ---- 5
the software:;

1. tnter the fDIs for A, B and C, as shown in ~ W.:':63,~~0I90

in Exhibit 2. Wihere probabilistic variables
are combined, substitute the functions "PLO
for addition, MI" for subtraction, 1011 for Exhibit 1I
division, OTIO for multiplication, and *EX" __________________________

for exponentiation. Note that in an
operation involving a constant and a
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Examle 1: Summary of Results

a.(^ PS. 3,5N3) six c

11O)PLO? "" It. 1.2
.312.6 m s.S

N--I g-------N@ @0C 0 0 0 0 06

"NINs"PIS 4.2501 MAKISJNIIt2.5706 am*"$ 9.32053
SAMPLU size$ 127 NEDIANI 6.40701

'~~s4.7106 AANClU 2.51455 ;' 63 .073
"KEAN 36b'g 1.2256 soaNUW4ssi 1.07411 AUSITUSIZI 4.25071

maxILU IF

*. 17.A

X: 1Pq.(?5N3)o 0N 0 a- a- -Isdn

"2.2uos 2.. 120

SAMLE sizes 2a7 "~absnI 6.31663
"IRA"I 6.74461 VA3IAMCE3 9.24134 STO 319V! 3.0?996
"a"MA SJb' 2.32959 S.UwUSSI15 0.950134 kUPTOSISS 4.0354

Exhibit 2 -

Example 1: Apply Decision Rules to E and F Opieratin~g Profits

MINIA NEX GME?93 0 I 02.41

flnw a.PEC?61D VALUES :1 -5.Z0"4
"INM VPASSNCE P I .~5145! -

Systems 1.E; 2 F

Exhibit 3

To review, we have seen that an analyst can-
encode uncertainty directly by invoking probability
density functions in assignment statements for the
probabilistic variables.- And expressions containing
the probabilistic variables are entered much as
regular expressions except that special functions (PL,
MI. TI, DI, EX) are used in place of the primitive
operators(+, -, x, *, and exponentiation). The
probabilistic re~ilts can be examined with a variety
of statistical and graphical functions to aid the
decision making, and several decision rules can be
invoked automatically with the "DECISION" function to
automate the choice among risky alternatives. In the
next section, end-to-end transit times in a message
processing network will be characterized with the aid
of the software.
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A Camand and Control Aoplication: Hessaqe All of the processes are assumed to be
Processing Performance statistically independent of each other. Nominal

performance statistics, which are also hypothetical
Robustness in command and control (C2 ) networks though not unrealistic, are given in Exhibit 5. I

is often enhanced by redundancy of message pathways. chose the Gamma Distribitfon to represent the
%he links of any path may encompass a diversity of performance stat;stics, because the Gamna Distribution . I
'requencies, transmission media, and formats (e.g. is unimodal and positively skewed, is defined over the
roice, telemetry). A variety of processes occur at domain zero to infinity and has a mean and standard
Iodes to convert messages for retransmission where deviation which are simple furctionsof the parameters
:ontent. format, transmission medium, frequency, or of the probability density function.lu The parameters -
ither significant properties of the message may of tie distributions for tach independent process are
..hange. Exhibit 4 depicts redundant paths through a given in the right-most column in Exhibit 5. Summary
iypothetical message processing network. The graphical comparisons of the individual processing..-.
objective is to transmit an authorized message times are shown in Exhibit 6. "- -.-. " -

(abbreviated "MSG" in the exhibit) to a recipient who
can determine that it is valid and who can take the
actions(s) indicated by the message. 0

The paths, or subsystems, are identified as
follows-:

o On Path A, the message is processed for
transmission on a data network (Process PI),
is transmitted (P3). received and validated
(PlO);

o on Path B, it is processed (P2), transmitted
(P4), received and recoded for voice

Example 2: Network Message Processing

voice (P6 DATA oe trst isfr sasaeh

,"8*P9+PO) o Pat D•Bcaseea-.roes-i

otp voice t ed a p a i A

tranisiono.San set(7Iietyt on using "th prbblsi sn in functin,.. .

T RA•NSMISSION O

P7:~ a- I Pa" I I S: P4- pal'-''-
MS am°' C .o~ FOR VOe a....

th esiaio hee i i ecie , isead ofth'pussgn Te.ssgmet"taemn
o finally,~~~~~~~~~~~~~~~~S on pt 0 iti rcse o oc ln ihgaphca anOttsia N alsso h

thog n nemeit r et an.iestmefplto•heedt-edtm..h lt

p e g fl b P8)S Ib i c a o f h n o d nt m r

- . 1. o .............................

IINV MGRECEIVED MSG

.............................. ..... ...

Exhibit 4"

transmission (P5), transmitted as voice (P6) The end-to-end transit times for messages are the-,•-i•".
with real-time relay through E. received and sums of the processes along each path: (P1 + P3 + .'..."
processed (P9) at the destination and P10), for Path A; (P2 + P4 + P5 + P6 + P9 + P11), for
validated (P10); Path 8; (P5 + P7 + P9 ý P10), for Path C, and (PS + P6 :..•

o on Path C, the message is processed for voice + P8 + P9 + P10)• !or Path D. Because each process is
trnmison(S)adset(P)dietl o treated as a probabilistic variable, each path sum is"""'-•

thea dstination (5 n et(7 ietyt found using the probabilistic summing function, PL, •:::'::
the dstintion where it is received, isedo h lssg, Teasgmn ttmn

processed (P9), and validated (P1O); Inted f.'.pussin.Te ssgnet taemn
• ~~~~which sets up the sum for path 0 is shown in Exhibit 7 "......

o finally, on path 0 it is processed for voice along with graphical and statistical analyses of the :....
transmission (PS) as in path C, but must pass results. Note the smooth envelope of the histogram-
through and intermediate rece',pt and like stemleaf plot of the end-to-end time. The plots--- ..
transmission stageo involving bacK-to-back for the other paths are similar. Summary graphical""" -"
processing (P6 foilowed by P8) before being comparisons of the end-to-end transit tines are shown ,..;':
received. processed 09g) and validated (P10? in Exhibit 8. °•'
at the destination. ... "•
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Example 2: Nominal Processing Time Statistics

MEAN, PARAMETIRS OF
ACTIVITY STANDARD DEVIATION MST PIT GAMMA'

PI: Press". Meses*g 6,.3 4.0, 0.0?

Process Moes"ag For a 7. 2 12.75.61.75

PS: Procss~ Messageo Jero*435 .
Voice vreowemswlo _____________ 2.25,_____0.__75

;13: Trooseift Moessag 0n A 5, 1 SA0, 3.0

P4: TreosiN MessageeD 03 3,.2 2.25. 0.75

PT: Treown Moessae 0o C a,.4 l.5e. 0.81

PC Treogmi Moes"ag On D 6, 5 1.44,0.46

PC Trook osm~es"age01 4,5 1.0,0.25

PS Process flecelvd Message 6.2 S0.0 1A8

1PIO: Valdats Rooek od Message1,1.010

to *elewhere -

Exhibit 5

Exampe 2: Seinewy of P1-PlO Inputs

"PP+010 127PP'IRP2,P'3.P'4.F5.-P?,P7,P'S 9 .P' 1 o
COMPARtE PP

21.*361
0.00106034

*2
a a3

0 0 03 -.
--- 0 0 0 0 a

0 a 02 X 02 04 a

1 05 a I I I 04 03
I x I I 02 02

TIT -IT 05 1I 1 1 1 ..I-I r 2 X 1-: 1 1 1 1 _A_ -I
II I X I II I- II i 02

Tr X TUT TI i I I - 06

X X 7 I I I .-

X X )X X X T

Pi P2 P3 P4 P5 P6 P7 Pe Pe P10

Exhibit 6
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Example 2: End-To-End iring For Path D
COLOT DYINNE

2. 000

00

000

00

00

6.7
00

0Y2N0.P5 P1. P, PL. P8 PL. P9 RL VIA 0

0 
00 12' 01)4 74

---- ---------- -0 0 to0~3.7

S!2PIE 2IE 1.9t Z40a~ Ok3'.C0
22~ta.6826 0~INE $5."83 "we 6E. s.~t~oz as M4 IS-

$01AW 069W 5.59714 sa~m.asso 0.445403 1WRTUSt~sa .~70 2

a? W4.6
0E 05A18

C341?1

00

0.1 00 41

0

cu COKI 1.0 1.0 5 01$.0 500 4b) A 00

Ca"TISA I14.JI" 1.43_2_ 2. "'1?- 2. 46 _Z.66424 40

for~ theW~ ot.00 10.e: 14e min.te fo.r A;8 37 intesfo

45.9043 d~~~~~~~~Ex istiuingah CL )a nEhbit 7. eod

Paths~syte p- rni I ereorare .two examplesfh useulnes hs offtere
0output formwngaats. irstnoeha th e prbailty centthefo

rT114E402 message3?M.CIfE~ H fo gteothes ahre:g 14hDwihn1 minutes fo ;3 ints for4
CU2IPAC TYO(grandh26al ute fror Cxiit7. These resut oaerea from*3the tabulationst itediaesy beneath theocumulathive1

5.900 disroaibution gorah not astin inrug Ex thibi A. Second, C7.3 1 3 Iwthen ou 5u graphics canre used to esiate overal

1-1 X A-repth ie f lloin analysis:1 , the probability that the
message gets through Path 0at within 15 minutesis01

07 (gaphuicaly fromndnc Exhibi 7).eses Therefore the

respectively0.0. Thereor, the probability that no

02 1 1 1 1 I massage does get through the system within 15 minutes
05 I-I is 1 - 0.05, or 0.95.

T assessing mpt ofugain rcsssi h

* discrete ev nt simulation, several other interesting .

Kavenues of nquiry could be pursued; time-dependent
Path Path Path Path survivabilit ,for example. However, with one small

A 8 C 0exception, e probabilistic variables must be assumed
to be independent of each other if the approach taken
by this software is to apply. Selected characteris
tics of the software, including the, assumption of

Exhibit 8 independence, are discussed in the concluding
__________________________________________ section.
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Description of the Software However, by sellct ing only the medians, the
extreme tails of the N' - member distribution are left

How It Works out, e.g. there will be 125 entries in the 16,129-
element table that will be less (gr.-ater) than the

The probability density' function (POF) of a lowest (highest) number in the 127 - elemtent sample of
variable which is the sum of two probabilistic medians. This omission may be undesirable to analysts
variables is the mathematical convolution of their who focus on the extreme values of a distribution.
PDFs. Taking a convolution is like scanning one PDF When the results of using this s'jftware were compared 0
across the other, exposing every point in tile domain with theoretical calculations, the standard deviations
of one probabilistic variable to every point in the often underestimated the theoretical values by about 5

doman ofthe therone.or 6 percent. This could be related to truncatingth
tails during median bisection. The discrepancy might

This software works in a similar way: each be witigated by including the two end points to yield
probabilistic variable is represented by a vector of 4 a r+l1or 129 - element sample, but I have not yet
numbers which constitutes a sample from the univers2! investigated this possibility.
of numbers with the indicated PDP. When two varlablksf
are Combined by addition. subtraction, 'multiplication, What C.-Dabilities it Includes
etc., all possible combinations (additions,
subtractions, etc.) of the elements of the vecters This is a general purpose probabili~tic
representing the two variables are formed. This mathematics system. The functions which should prove
yields a table of dimension N x N, Exhibit 9. Because useful to general users are listed in Exhibit 10.
the table is too large to carry around in the computer Tney are described below.
for further calculations, an N-element sample is taken
f om the table. The sample is. formed by sorting the Continuous PDFs. These represent continuous 01
TN' elements of the table, finding the median and random variables by sets of numbers sampled from the
bisecting the sorted set at the median. Then the universe of appropriately distributed numbers. The
lower and uper halves are bisected at their respective density of sampled numbers between any two points in
medians; then each quartile is bisected, and so forth, the domain of the POF is roughly proportional (within
until a sufficient number sf medians result. The sampling accuracy) to tke area under the POP between
number of fractiles equals 2 r, where P is the number those two points. Sample generation starts with
of successive bisections. Therefore, the number of pseudo-random numbers. These are then transformed
M dians (the boundaries between adjacent fractiles) is into the appropriate distributions by a variety of
2F -1. algorithms which include iv se transf orm at ions and

acceptance-rejection methods. As was illustrated in
Once two variables are combined through N x N the examples, it is helpful to display the saimple with~

expansion followed by median bisection s!irinking, the some combination of. a boxplot, stemleaf ancj
result is available for combiniiig in like manner with statistical summary to make sure that it fits the
another variable (for example, in the sum A + B + C, B actual POP accurately (for example, is the sample mean
and C are combined first -- APL evaluates expressions within a few standard Errors of the theoretical
from right to left -- and the result is then combined mean?). If not, new samples should be generated until
with A). It is convenient to keep the vectors the one that satisfies the user's needs is obtained.
same length throughout this process. For P = 7, there Checks like these could be built into a production
a re 12Z elements in the vector. If Ni is chiosen to be version of the software, but for now they must be dune
127 , N1 is 16,129 entries. A table this size uses a manually.
lot of main memory -- over 120 kilob tes for 8-byteflotin pont umers (Fr P* 8Ni s over 65.,53 Discrete Pois. These represent discrete reido
requiring over 520 kilobytes of storage.) Thus, for variables (e.g., integers) in a way similar to the
practical purposes, the sple size fo~r e ach continuous PD~s just described.S
probabilistic variable ise127."~

Primitives. These do probabilistic addition,
Why' bisect by medians? in part, it is a subtraction,, multiplication, division and

philosophical throwback to methods for eliciting exponertiation. They work by computing a numerical
subjective probability distributions for uncertain analog of a convolution, as described above.
paraijieters. The subject is asked to give an estimate
such that the actual, but unknown, value is Display Functions. These produce statistical
equiprobably above or below the estimate. This summlaries and graphical representations of one or more 0
bisects the probability distribution at the median, samples. Their use has been illustrated in the
Then the subject is told to assume that the actual examples. Three of these functions merit special
value lies in the lower half of the bisected mention: 11STEMLEAF11, "BOXPLOT" and "COMPARE", all of
distribution and is asked to estimate a value such which were taken from [McNeil, 1977].
that the actual value is equiprobably above or below-
it. This estimate bisects the lower half. The same The stemleaf plot appears visually similar to a
operation is done with the upper half, yielding the histogram with a vertical axis, but it contains more
boundary values of the quartiles of the subjective information about the numbers in the sample. 0
probability distribution. The process can be repeated "STEMLEAF' divides the sample range into intervals and
to yield octiles and so forth (at the risk of prints two leading significant digits of each interval
exhausting the subject). Because many of the inputs to the 'left side of the vertical axis. A digit equal
to probabilistic computations with this model will ue to the (rounded) third siqni'icant figure of each
subjective estimates of uncertainty rather than best- number in the sample is printed to the right of the
fits to empirical data, there is a consistency in axis and aligned with the two-digit number
using the median bisection technique to shrink the repre~senting the proper interval. Thus, in addition
table down to manageable proportions. Also, because to giving a visual impression of how the sample is .many of the operations are inherently non-linear, it distributed, the stem leaf plot shows the actualmakes more sense to bisect by medians than by (rounded) numbers.
alternatives such as means (should one use geometric
means for operations involving multiplications, for
example?).
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Softwure Description: How It Works - . i

A~ x5~ N
/ IIII I - III I I II III if I I T T 1 1 t" • .

AAA
S® Li"

EXTRACT
2P- I

WMEIANIS

a -.. "-..- -. :

Exhibit 9-.

The OBOXPLOT" function produces an alternative distributed sample (or to approximate other syimmetric
;ual impression of the sample distribution. Imagine distributions) which is correlated with one or two
cing an invisible mark on the horizontal or vertical already generated samples (which may, but need not, be
Is for each iemi~er of the sample. Then enclose the correlated with each other). The user specifies the
ige from the 25th tc the 75th percentiles (the other probabilistic .ariables and the desired
iterquartile distance") In a box. Denote the median correlation coefficients as arguments of the
Ith percentile) by an asterisk (horizontal boxplot) function. The correlation coefficients must satisfy
a hyphen (vertical boxplot) placed on the axis certain constraints, and *CORR" checks for this... . -

side the box. Next, place t.oo x's on the axis to
rk the sample members furthest from, but within one Once the correlated sets have been generated, the
terquartile distance of ei ther side of the box. order of their elements must be preserved, and the N x
note with open circles each sample member lying N table expansion cannot be used. They can be
tside the x Is (denote multiple values, where too or combined in APL just by using the native primitive
re circles overlaip within the resolution of the operators ( +, -, x, #, and * for exponentiation)
inter, with an adjacent numeral). Identify as which combine the N elements of each sample on a one-
tliers those circles lying more than 1.5 on-one basis. The resulting N-element set will
terquartile distances outs~de the box by filling in incorporate the influence of the dependency among its .,...

e circles. Signif icantly skewed distributions are variables. It can then be combined freely with other
sily detected by t't lack of syrrietry (o~f the non-correlated variables using the regular functions
dian, x's and circles) with respect to the box. already described.
ghly peaked distributions will Uive few circles,
ffuse distributions should have several. This The function "RHO" calculates the correlation 0
escription for a boxplot was adapted by McNeil from coefficient between any two N-element samples. NMATO
mn Tukey's original version. displays the moment matrix, covariance matrix, and

correlation matrix for N-element samples. TMRHOO and
"~COMPAREO prints side-by-side vertical boxplots, "MATO can be used to test for or to verify

I to the same scale. The upper and lower bounds of correlations among variables.
e total range of the samples are printed at the
'Iper left. "COI'PAREN facilitates a visual comparison Niscellaneous Functions. The six functions shown

several samples (recall that 10 processing time are machine.)y are coded for IBM's VS" -
istrbutions were compared in Exhibit 6) by depicting APL running under the Conversational Monitor System
te relative positions of their medhans, the (CrS). Wi th implementation- dependent modificationn ,

imensions of their dispersions, and their ranges. however, they can be adapted to versions of APL

Correlrunnir.j on other systems. The most important function
elation. By taking all possible combinations of this group is ON. it takes the place of APL's

'variateu in samples in N x N expansion, the left-pointing assignment arrow, and it permits use 9
)tmitive algorithms destroy any correlation between this software system from a non-APL keyboard.
obabilistic variables. Sometimes it is desirable to RESET also performs an operation that would require
tintain a dependency among variables in an a special APL character, the right-pointing arrow. It
tuation. "CORR" is a function which is patterned clears out any calculations which may have been

fter Bonner and Moore Associates' correlation suspended as well as functions which may have been
lgorithm. It allows the user to generate a normally pendant (awaiting intermediate results) when an error
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is encot'ntered and calculation stops. And it also Concluding Remarks
saves the cleaned-up workspacc.

The motivation for creating this software grew
There are several other it-eluded functions which from my interest in examining and quantitatively

are called by the functions listed in Exhibit 10, but describing the influence of uncertainty on making
which are of no direct u, . to the user. For example decisions -- especially when an explicit treatment of
the placement of the graph!c characters in the uncertafity anid an evaliation of the resulting risk
displys generated by "BOXPLOT" and "COMPARE" are reverses the decision that would otherwise nave been
computed by the function "FILL". made. My intent was to develop a general purpose

system that requires little set-up time to run a
problem and in which the problem can be entered in a "

S-FTRARE SUMMARY form that is natural to analysts.

Probabilit;, Density Functions (PLFs) The system grew by pieces as a spare-time
interest over the rast 18 months. Now, it is in a

Continuous POFs Discrete PDFs develor .ient state an'd ready for testing and refinement
with actual applications. I would welcome the

BET Beta BIN Binomial opportunity to collaborate with investigators who seek
OIl Chi-squared GEO Geometric a way of systematically evaluating the role of
EXP Exponential HIP Hypergeometric uncertainty in their quantitative analyses.. -

6N Gamma NIB Negative Binomial
LOG Log normal POI Poisson The graphics are of a homespun variety. One
NOR Normal tends to appreciate their richness with use, and to
RAY Rayleigh forgive the unpredictability of their embedded scaling

(circular normal) algorithms. Yet, with all the commercial graphics
TRA Trapezoidal software on the market, the possibility of adding some
T7R Triangular gloss and sparkle to the display capabilities is
UIN Uniform enticing. Suggestions and opportunities for
EI Weibull collaboration on tie display featares are therefore

also invited.
Primitive Functions

Footnotts.
DI Division ("divided by") 1 This particular implementation of the software has
ER Subtraction ("minus*) been coded in the APL programing langquae because
PL Addition ("plus*) APL has built-in array processing features that

TI Multiplication ("times") facilitate the necessary computations. Ir,. APL, the
assignment syrbol is the back-arrow -

Display Functions multiplication, is x; division, is *, and
exponentiation is a single asterisk, *. However, S

BOXPLOT Graphic representation of a sample beyond knowing these few sy¶mbols and the precedence
distribution relationships for combining operators in APL, the user

CENT Centiles of a sample of numbers need not have a working knowledge of APL.
COMPARE Side-by-side comparison of several boxplots 2 "-r.s-CE-a
OPLOT Plot of cumulative distribution of a sample The software includes a function "CENT" to extract
DECISION Applies decision rules and identifies best this information. Its syntax is P CENT X, where P is

alternatives a list containithg one or mere percents of -
DSTAT Summary statistics of a sample interest. The output contains the corresponding ,
FREQ Unique members of a sample and their centiles of the orobabilistic result X.

frequency of occurrence 3 These capabilities are also included in. thePLOT An X-Y plot, scattergramPLT A -Yposatega fs ape oftware: a functioi which compiles summary "-".-"
SrEMLEAF A histogram-like representationsotae a uci wch omls smar
$1________Ah__togra_-l__erepresentationofasample statistics and several functions whch produce

Other Functions graphical representations of results on the printer
are included.

Correlation 4 Another closely related definition of risk consluers
oth only that portion of the dispersion that falls to one

IORR Forms normally distributed sample wi (undesired) side of a critical threshold such as
prwooterie cra tn proftt-loss breakeven point, yield strength of

MT two other samples
MAT ment, covarance and correlation material, toxicity level of a dangerous substance,

matrices among samples etc.
.O Correlation coefficient between two5 Decision rules which balance expected outcomes with

sampes risk are called mean-risk decision functions. The

Iiscellaneous (Implemontation-Dependent) Functions software includes a function which applies a nunber of
decision rules (Including mean-risk and game-theoretic

OTG Prints date and time rules) to probauilistic alternatives and indicates theT Pripleents dateandtigment opbest choice for each rule. It algo includes graphical
is Implements assignment operator for copriocapbliis

non-APL keyboards comparison capabilities.
RESET Clears out suspended operations and 6 Department of Engineering and Public Policy,

saves the workspacesaves th e ork ta e Carnegie-Mellon University, 5000 Forbes Avenue,SKIP Creates blank lines on •he output display Pittsburgh, PA 15213, (412)578-2672."'-""
STATUS Shows CPU use and workspace status "-uh-13 (-52 .
TIME Times the execution of a function 7 Leo H. Groner, IBM, Inc., Box 390, Poughkeepsie,

Exhibit 10 N.Y. 12602, (914)463-3615.
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8 Alan Jenkin, Bonner and Moore Associates, Inc.,
2727 Allen Parkway, Houston, TX 77019;
(713)522-6800.

9 Notes: (1) The left-pointing arrow is used for
assignment in the APL language; the function "ISO has
also been provided for use on keyboards which do not
have the arrow; (2) The number 127 instructs the
computer to represent the probabilistic variable by a
vector of 127 variates -- in a later, more refined
version of the software, it should no longer be
necessary to specify the number of varates; (3) The
boxplot (McNeil, 19771 which is a representation of
the distribution--the median is represented by the
asterisk, and outliers are open (near) or filled-in
"(far) circles -- and the statistical description
invoked with the function 'DSTAT' (Ramsey, 1981] are
not obligatory; they are available to characterize and
check the statistical samples which have been
generated to represent the probabilistic variables.

10 If the parameters pre E and L, the mean is E/L, and
the variance is Eli'. Also, the mode is given by a
simple expression, (E-1)/L, which adds to the

% convenience of using the Gamma Distibution.

11 Bullers, J. W., "Methodology for Calculating the
Expected Performance of European Theater
Communications Systems%, working draft dated 31 March
1983, The MITRE Corporation, McLean, VA 22102

12 Even this manageable number requires a 1 Megabyte
virtual machine on an IBM 370 mainframe running under
CMS.

13 See, for example, (Fishman, 1978).

14 For example, one can type 'X' IS '127 NOR 5 3.
(enclosing the left and right arguments In single
quotes). This is equivalent to the assignment
statement X.-127 NOR 5 3.
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COMMAND DECISION MAKERS AND THEIR MODES OF INTERACTION

P. D. Morgan

Scicon Ltd., 49 Berners St., London WIP 4AQ

Ata terms of some objective function, or of some
Abstract. An analytic model of the basic decision

making process is presented; in this it is shown how goal state;
extpinal inputs may be employed to reduce the scale of iv) a search strategy for evaluating and selecting
the decision making task, which is represented in the options in terms of the current and goal states.
form of a pair of coupled decision making processes. peus
An approach based on control and estimation theory is Examination of these requirements In terms of control
used in modelling the decision making process; this is and estimation theory, and of game tree search [7]
supplementej by concepts drawn fron knowledge shows that a decision maker with finite data processing
representation and from game tree search. Finally the capacity requires some method of truncating the
decision maker is examined as a part of a control estiaticn and search processes when handling other
process in order to identify the relative tempos of thantriv ad Tse rocsse s wnandlig other-

thntrivial tasks. These truncations carry with them
different operations and interactions. the risk of excluding appropriate decisions;

( consequently it is necessary that the decision maker be
capable of adapting the truncation processes in

1. INTRODUCTION accordance with past experience and the current state

of the environment.
The Commander and The Command System are subjected to a
steadily increasing load due to the continuing increase The model of the adaptive decision maker is based on
in the range of the combat horizon and the steady the two stage rode] of Boettcher and Levis [8] and on
development of Counter C

2 
techniques. The solution the model previously discussed 12]. The basic decision

ganerally adopted to support this load has been to making process consists of the determination of the
resolve the Commander'e objectives into ranges of more state of the environment (Situation Evaluation) and the
limited objectives, and to assign these to subordinate choice of an appropriate response (Response
commanders; however this introduces problems of Allocation). Adaptive behaviour is obtained by
co-ordination between these subordinates [I], which at rodelling the decision maker in terms of two parallel
present are handled entirely manually. The decision processes; an 'on-line' decision process
introduction of automation into the Command System has concerned with assessing the environment and directing
made apparent the need for a quantitative understanding the operation of the resources, and an 'off-line'
of the command decision process and of the interactions decision process concerned with optimising the
between decision makers; this understanding is truncation of the estimation and search processes.

' • required to provide a basis for the analysis and design -
of Command Systems. This model was developed to explore the various modes

of interaction within a Command System, and as an aid
In previous work the operation of the Command System to determining appropriate man/machine roles within a

* was represented in terms of a basic module; this Command System. An approach based on control and
included the decision making process together with its estimation theory was used as it facilitated
means of interacting with its environment 12]. It. this examination of the internal and external interactions
approach the problems of controllability and of the decision maker.
observability 131 were addressed by means of the
nesting of modules to reflect the hierarchical 2. TFE BASIC DECISION MAKING PROCESS
structure, and the use of 'Volumes of Interest' and
their overlaps to determine lateral communications i1], The decision maker is envisaged as operating in an
,4]. environment in which a variety of distinguishable

phenomena may occur, either serially or in parallel.
A further conclusion of this work was that decis;.on The Phenomena are represented to the decision maker in
makers within the Command System can be classified in the form of a time-ordered sequence of noisy
terms of goal-seekling behaviour 151, 161.; the three measurements, x, which are evaluated to determine their
classes used correspond to: goal seeking behaviour; individual significances by the Situation Evaluation
multi-goal seeking, adaptive behaviour; and Ideal element; the output from Situation Evaluation takes
seeking, learning behaviour, On this basis it is the form of a sequence of estimates, z, of elements of

apparent that the decision maker must be provided with the situation related to individual phenomena, or to
associated groups of phenomena. In the Response

i) resources usable to explore and modify the Allocation e' ment this sequence of estimates is used %" -
"environment; to determine the discrepancy between the goal state,

Z , and the current state, Z0 , and to select
1i) finite sets of population and control models appropriate control outputs, y; these outputs

representing the contents of the e~cternal correspond to the allocation of particular responses to

environment and the operation of his resources the various resources controlled by the decision maker.
within the environment;

"In this case it is assumed that each phenomenon is a
S iii) a goal or goals which may be represented in member of one of a finite but possibly large set of
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Fig. I Situation Evaluation

populations or classes, and that the decision maker has p(f 411C(,~ ______'kt__x_1)

access to a finite but possibly large set of responses. 2Px 1 kI~Ž ()
E.,ch Population has an associated population m~odel for xp )
the generation of the individual situation estimates, where p(fn W) is the prior probsbif~ty that an
z, on the bA,41s Of the mensures, x; similarly each observation, c, Y.ill be drawn from the n populatio~
response has associated control models foy the ( fW)Ith liehod fammbr fter
generation of the control outputs. Thus the Situation (xklf()) sth liehod fammbr fth
Evaluation element Is concerned with the Identification population giving rise to the observation x i(k), and "

of the population from which the measure. x, is drawn, p(N I W) Is the probability that % I (k) has its assigned I
folowe bytheappicaionof he eleantpoplaton valuie in X. This representation relies on0 initial.
foloedbyth aplcaio f hereevntpoultin knowledge for the determination of the Prior

model; and the Response Allocation element .is probabilities and the likelihoods; the manner in which
concerned with the evaluation and selection of a he w em r adedipcso h dpino
particular response, followed by the application of the thes d w e risio mareihng le pmasoceses.ptno
associated control model. tedcso aigpoes

The values assigned to the set of prior probabilities .-..
The 'tasks of searching through these range of these reflect the excpected state of the environment. It Is
populations and responses will result in an assumed that in any given period a large proportion of
unacceptable processing load; consequencly some means these values approximate to zero; in defining a frame
of truncating the searches is required. The approach these values are set to zero, restricting the
adopted Is similar to the 'frsmae' approach to knowledge estimation process to a subset of the populations. The
representation (71; it assumed that in any given remairing priors are-assigned initial values pf( )
period the populations observable will be members of a In the case of sequential measures on dynamic processes
predefined subset of the set of all known populations;, the prior probabilities may be represented as
in addition, the available responses will form a subset p(f (x (k)). where
of the set of possible responses; in combination this U i
pair of subsets corresponds to a frame. The frame to p(f ( (2)
be employed is defined for the decision maker on the n 0 ~~x)

be to The evolution of the prior probabilities wit" the
objectives, and any constraints on the use of resources successive measures on I m(y have different forms:
(e.g. Rules of Engagement, E14CON plan, etc). Thus the
basic decision making process always operates within an i) constant prior probabilities
eictersallya defined frame and Is not capable of
Instituting a transfer to some. alternate frame. p(f U(X 1 k0)) - fa Z(3

Sitatin ~it) recursive. prior probabilities

The input to the Situation Evaluation element from the n(- N x(k-1)) (A)
environment Ais taken to consist of I noisy signals, xi ~n(~ik) I pn x (k I)

where is I. The application of a sampling plan or i Y xii) adaptive prior probabilities which are based on

z, ointill n the b so h esrs ;smlryec bevtox ligh of syt emao•tic diopurancoie-

provides the input in the form of a sequence of noisy t .i pmeasures, Wlee, which are tiaen th p eolsterior probabilitiekens adjusted

correspons; identified by teItvto aesso h
processes; p t e individual measures, x (k), are vectorsXindi id popultintmod el es(91.
of dimen Ion lityrwhich taken their Ievalues from theindividue por ltie models o9"

oe aThe first two alternatives have the advantage of

TheSituation e evaluation elem ent (figuree)ctonsiss of sisplicity, but the disadvantage that any initial
pertwo cuamone ntspons, f lemer the (fwic 1is cone withs isestieeation of the priors is carried throughwoco ent ssuccessive esticates.
idenitifying ti'e Population from which x I M is drawTfThe probability that xTe W is a member of the nr -b
population is taken to be assuceatid with eiacl Population model. It is assumed

that ts e s.d.f. of each model is defined by the
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predicted measure, It (k), and variance, Vn (k), control models is governed by an externally defined ;
obtained froir the population model, where they are goal state, Z_, the current state estimate, ZC, and
derived from the previcus measurement history. externally defined constraints on the use of the

control models. In distinction from the model of
"The population models, f (x), provide the means of Boettcher and Levis 181, the aggregation of the
generating state eatimates" r n(k), which take the form individual state estimates, zip to form Z0 is included
of vectors of dimensionality a. where n the selection process."

a 4 r (5) The form of selection process employed depends on the
nature of the decision macer's environment and on his

The individual population model ccntaiss a state model, modes of interaction with it. It is assumed that the
which provides the means of generating the state state evolves stochastically at a tempo which is not
prediction, M (k), on the basis of the previous best subject to the decision maker's control; adeitionally
state estlmate _, (k-1); in addition it contains a it is assumed that it is not generally possible to
measurement model nhich is used in the derivation of detertine the complete chains of operations which
t M from (k) and x.(k), and the generation of transform Z0 to ZC , and that the decision maker is

rnt (k) from W(k) The variance, V (k) is deriveO provided wit a set of independent resources capable offrom, the noise oftestaterImdl n tefro the plan of the t i model and the acting on his environment.
measurement noise of the measurement model.

These general assumptions are extended by the further,
The final task• of the Situation Evaluation element is alternative, sets of assumptions.
that of electing the hypotheses (populations and state
estimates) which snould be discarded. The objectives i) that in the timescsle of interest the individual
here are those of controllina the total load on the 2. are independent, and that each control model,
decision maker, and of retaining sufficient h (z), corresponds to a mode of operation of a
alternatives to permit errors to be identified and sTngle resource on a particular population or
correcle'd. It is assumed that a larger number of group of populations;
hypotheses will be retained within Situation Evaluation
than will be output to Response Allocation, and that it) that in the timescale of interest the 4. are
the latter set is included within the former, best considered in terms of Z, and thati each

control model, h (z), corresponds to the
The selection process is based on the assignment of operation of a number of resources.
costs L n (where n,l.F) to the populations, the
definitIn of the costs forming part of the definition These sets of assumptions may be related to the
of the frame. The selection process differs from that different levels of abstraction in ABSTRIPS 17), 110].
normally used in signal estimation in that hypotheses
are tested for rejection against criteria based on the In the sele-tion process the control models are
total nuaber of hypotheses extant. The minimum cost represented as stochastic operators which transform
for any hypothesis is determined for each input signal, state Zn (the state estimate arising from the
and hypothcses are ordered with respect to costs operationi of f (x) on x.) into state Z with
relative to these minimum costs; hypotheses are then probability p(z nib (z)); M feedback from thePcontrol
discarded in order of decreasing relative cost until models will be rsef t0 update this probability during
the required numbers of surviving hypotheses are the implementation of the control. The combination of
attained, this probability with p(z ), where

ni

Response Allocation P(zni) = P(fn(x)i•i) (6)
provides the means of evaluating the probabilities of

The Response Allocation element (figure 2) contains a achieving intermediate states, p(Z ). through the use
range of control models, hb (x), capable of generating of a particular range of processes.P The Z may then be
control vectors, y (k) , Pon the basis of state evaluated to determine their distances fr&. Z0 S(Z)
estimates, t (k); additionally it contains the means of to provide pruning criteria 171.
selecting tte control model to be applied to a tpv.rn iea.

particular state estimate. The selection of the

Z.m

G(Z.M) Nh 4(Z)

h2(r) r

-. o-°.- "

h M

Fig. 2 Response Allocation

63
--S.

*-,---o 1***.



In practise limitations have to be set 'on the breadth decision making process; its goal is that of selecting
and depth of the search. It has already been mentioned the optimum combination of externally defined goal and
that the definition of the frame includes the provision predefined frame for Assessment in the context of th-
of constraints on the selection of individual control observations of the environment sad of Assessment.
models; these appear as weights on the selection,
W(z ,p(z n)). Alternative approaches using these The signal inputs to Planning consist of *the measures
weights are goal-directed game tree generation using a of the environment and on Situation Evaluation and
simplified state and operator representation 1101, the Response Allocation in Assessment (e.g. p(f (x) xi(k)), S
Identification and use of appropriate pre-planned Z^, Z , p(Z ), S(Z )). The control Inputs Ynclude goal
strategies [111, or the use of Expert System 8 ate, fre Ad frame parameters; the Planning
Techniques. The alternative selected will depend on frame, the related set of goal states and their
the natures of the decision maker's environment and associated weights are expected to be changed
task. infrequently; the frame parameters are expected to be

changed more frequently, corresponding to the downward
The outcome of this selection process is the provision flow of Information ýn the overall situation [41. Each
of subsidiary goal states to the individual coitLrol control model, h (z), corresponds to a signal 0
models. A standard control theory approach is asaumed Assessment frame; %ence the control vectors, y (k),
for the control models and the generation of the relate either to the alteration of parameters wit~in a
control vectors. y .131; each control model Is based frame, or the definition of a new frame.
on a single physicafl process model.

4. THE CONTROL PROCESS
3. THE ADAPTIVE DECISION MAKER

The interaction between the decision maker and the .
The model of the basic decision making process shows command syster is represented in terms of the Control
how the processing load on the decision maker may be Process (figure 4). In this model 'Perception'
controlled through external limitation of the available provides the data collection, fusion and filtering
options and the provision of a single goal state. The required to generate x; and 'Execution' represents the
extension of the model to accommodate self-adaptive, operation of decision maker's resources.
multi-goal seeking behaviour is achieved through the
interaction of a pair of decision making processes There is a considerable body of work on the problem of
(figure 3). signal detection and estimation [121, [13]; a factor S.

which is observable in this work is the asymptotic
The 'Assessment' process observes the external behaviour of p(f (x)Ix (k)) with sample size, k. This
environment and generates control vectors to modify the convergence has Been a~dressed by Cramer [141 in terms
state of the environment towards the goal state; in of a sampling distribution which uses the least squares
carrying out these activities it is constrained by the principle to provide a measure of the deviation between
frame defined by 'PlanninC'. The Planning process the observed and predicted frequencies on the
monitors and directs the operation of Assessment; measurement. In this analysis It is shown that the
direction is effected by control of the Assessment specified sampling diztribution tends towards the _
frame; a possible additional control mode is that of Chl-squared distribution as k-w 0; it is also stated
command over-ride or veto. The relationship between that the sampling distribution approximates to the
Assessment and Planning differs from that between Cbl-squared distribution when the predicted frequencies
separate interacting decision makers in that they share in each sampling region are ý 10. ,'. --

a common input from the environment, and that their
tempos are coupled. The operation of the decision maker within the Control
The operation of Assessment is readily represented in Process may be illustrated by the consideration of the
terms of the basic decision making process and will not simple optimal control problem of minimising the ...
be considered further. Planning also operates in objective function
accordance with the basic goal-seeking model of the

Plannin:

Fig. 3 Japtlve Decislon Maker
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The operation of Assessment is readily represented in ST
terms of the basic decision making process and will not O(r,y) - • (Za(t) + y

2
(t)]dt (7)

be considered further. Planning also operates in 0
accordance with the basic goal-beeking iodel of the
decision making process; its goal is that of selecting with alternative process models, one of whichthe optimum coobination of externally defined goal and acconwodates the presence of a bidden variable; usingpredefined frame for Assessment in the cortext of the the Fuler-Lagrange method, general solutions for (7)
observations of the environment and of Assessment. are obtained for the alternative process models, these

solutions correspond to individual b (z). Figure 5The signal inputs to Planning consist of the measturea shows the evolution of the state variable resultingof the environment and on Situation Evaluation and froi this control, the lover curve is the optimalResponse Allocation in Assessment (e.g. p(f (Y)hx(k)), control path and the upper curve is the control path
Z , Z . p(Z ), S(Z )). The control inputs Ynclude goal resulting from the effect of the bidden variable. The
sa tel, frl'es, A~d frame parameters; the Planning figure also shows three basic periodicities in the
frame, the related set of goal states and their operation of the Control Process:
associated weights are expected to be changed
infrequently; the frame parameters are expected to be 1) the optimisation period;
changed more frequently, ccrresponding to the downward
flow of information on the overall situation 14]. Each ii) the optimisation cycle corresponding to thecontrol model, Ih (z), corresponds to a signal selection of h (z) and the updating of
Assessment frame; "ence the control vectors, y (k). parameters in ,I ;
relate either to the alteration of parameters within a
frame, or the definition of a new frame. iiI) the control cycle corresponding to the tempo of

z1 (k) and consequently the tempo of operation of
individual h(a)W,

4. TlE CONTROL PROCESS ,
Application of these periodicities to the adaptiveThe interaction between the decision maker and the decision maker results in the following set of

command system is represented in terms of the Control relationships:
Process (figure 4). In this model 'Perception'
provides the data collection, fusion and filtering "required ;o generate x; and 'Execution' represents the Assessment Planning
operation of decision maker's resources. .. .. . ..... . .. ..__

There Is a considerable body of work on the problem of Control Cycle
signal detection and estimation 1121, 1131; a factor
which is observable in this work is the asymptotic Optimisation Cycle Control Cycle
behaviour of p(f (x)Ix (k)) with sample sine, k. This
convergence has geen Asdressed by Cramer (14] in terms Optimisation Period Optimisation Cycle
of a sampling distribution which uses the least squares
principle to provide a measure of the deviation between - Optimisation Period .the observed and predicted frequencies on the .......... ___"-__-..__"
measurement. In this analysis it is shown that the
specified sampling distribution tends towards the
Chi-squared distribution as k-we ; it is also stated In the simplest case, using Cramer's conclusions forthat the sampling dist-ribution approximates to the sampling distributions with a single degree of freedom, '-Chi-squared distribution wh % the predicted frequencies it appears that optimal performance will be obtained by iin each sampling region are ) 10. an adaptive decision maker when the tempo ratio between

the Assessment control cycle and the Planning 6The operation of the decision maker within the Control optimisation period is of the order of 1000:1.
Process may be illustrated by the cousideration of the
simple optimal control problem of minimising the This approach may be extended to address hierarcticalobjective function and lateral interactions within a Command System;' the

general concepts involved have been discussed in
previous papers, [2] and 14].

~-1 ~CONCLUSIONS

The application of a control and estimation theoretic
approach to the modelling of the decision making
process provides a means of identifying different mod,-a
of interaction between the decision asking process andPefroption Execuffon Its environment. It also shows how external knowledge

L! may be used limit the scope of the decision makingprocess in accordance with some higher level
appreciation of the situation; this limits the range
of alternatives to be pursued, both in assessing theEsisl Envionment situation and in selecting appropriate responses, with
a consequent reduction of the processing load.

A case which is of particular interest is that of
decision maker capable of self-adaption and of choosingFig.4 ControlProcess between alternative objectives in response to changes
in the environment. A model of an adaptive decision
maker is developed from the model of the basic decision
makino process by the Interconnection of two such
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processes; this provides the means of representing
complex decision making behaviour in terms of 8) K.L. Boettcher and A.B1. Levis, 'Modeling tf'
relatively simple elements, and in a manner which Interecting Decision Faker with Bound,
reduces processing requirements. Fat4onality'. IEEE Trans. Sys. Man & Cyb.. Vol

SMC-12, No 3, May/June 1982;
The incorporation of the decision raker within the
Control Process provides a basis for analysing the 9) A.1l. Jazwinski, 'Stochastic Processes and
interactiors between decision makers within a Command Filtering Theory** Academic Press, New York,
System In terrs of tempo of operation aird Its impact on 1970; --

decision maker performance. This has obvious
implications In the area of the development and 10) E.D. Sacerdoti, 'Planning in a hiersrrhy of
evaluation of Command System architectures. abstraction spaces', Artificial Intelligence, 5,

1974;
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INFORMATION THEORETIC MODELS OF MEMORY IN HUMAN DECISIONMAKING MODELS

Susan A. 1all Alexander B. Levis "

RCA Astroolettronics "Massachusetts Inatitutt of Technology
Princeton, ttew, jrsey Cambridge, Massachusetts

ABSTRACT In complex situations when a limited amount of
d oadn t stime is available for the decisionnaking process, the

•"-fodels of nemory and informsation storage useful deeisionmaker may be better modeled as being boundedly
in the modeling and analysis of deoisionmaking with rational, i.e., constrained in his abilities to
bounded rationality are discussed. An information formulate actions and foresee consequences. Rather
theoretic model of permanent memory is presented for than always being able to make the optimal decision, a
describing the accessing of stored information by the docisionnaker with bounded rationality may satisfice,
algorithms within the human decisionmaker model. It is that is, may seek to satisfy some set of minimal
then applied to the study )f the performance - criteria in making a decision 1101.
workload characteristic of a decisionmaker performing
a dual task . . . The model of a decisionmaker with bounded

rationality (51, [61, [71, shown in Figure 1,
1. INTRODUCTION consists of two stages: the situation assessment (SA)and the response selection (EtS) ones.•"••"'-

Information theory was first developed as an and 
-e

application in comunication theory [Il. But, as ,
Khinchin 12] showed, it is also a valid mathematioal. ..
theory in its own right, and it is useful for
applications in many disciplines, including the i

modeling of simple human decisionmaking processes [31 Y ,-.,:.,
and the analysis of information-processing systems.
"Laming [41 observed, however, that the human
decisionmaker does not act like a memoryloss S--s''' %
ecomunications channel, and, in fact, the purpose of S R
most docisionumaking systems is quite other than to •
reproduce faithfully at the output what was given to
the system as input. In accordance with this L =:.j'
observation, a two-stage Information theoretic model
of the decisionmaking process has been developed [15,
[61, [71 which includes internal variables and
algorithms between the input and the output. However. Figure 1. Model of decisioumaking process with
the modal is memoryleassi that is, it is unable to performance evaluation mechanism
rscosgizs any statistical dependence that might exist
in the input or access internal or external data In the SA stage, one of U algorithms is
bases. This is a simplifying but very limiting selected via the variable u to evaluate the input and
assumption: certainly many organizations receive a 'hypothesize about its origin." The output of the SA,
variety of inputs related to the same situation, and stage, z, could be an estimate of the actual signal
many of these are statistically dependent on one given the observed input, or some other statistic of
another. Son and Drenick (8] recognized the need for the input, or even the entire input itself. The
adding memory to models of decisionmaking systems, variable a is then given to the response selection
They modeled the human decisionmaker as an adaptive stage (RS). and one of V algorithms is chosen via the . -
channel, i.e., a channel whose input may depend on variable v, to process the eoaluated input into an
present and past inputs. With this addition of appropriate response. Both sets of algorithms are
memory, they achieved results which, in some assumed to be deterministic, so that, given an input
experimental situations, reflect observed behavior. a, and the values of u and v. the output y may be
However, they have made no attempt to model explicitly exactly determined. Bounded rationality is modeled by
the various types of memory that msay be found in a requiring that the total rate of activity of the %
decisionmaking system, system, where total rate of activity is a well-defined

information theoretic quantity, be liss than some T,
Several models of memory have been developed (91. maximum value, which is specific to a given

Buffer storage allows the decisionmaking system to decisionmaking system.
process sequential statistically dependent inputs
simultaneously. Permanent memory provides The performance of the decisioumaker is evaluated
decisionmaking systems with information which is not as shown in Figure 1. The actual input x' is
updated as a result of internal processing, while corrupted by noise, a. so that the system receives I
temporary memory allows for the updating of the stored =z'+n, a noisy version of the input. This noise could
information. All three have been analyzed 19)l range from representing actual interference with a
however, emphasis is placed in this paper on a model message sent to the decisioumaker along standard
of permanent memory and its use in the analysis of a :omunications channels, to representing the
model of a human decisionnaker faced with a dual decisionnaker's inability to observe perfectly, or
task.
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obtain perfect information pertaining to his internal variables, w5 through wN-s. and an output
environment. The mapping L(U') yields y', which is variable, y, also called WN• The PIR states
defined as the ideal response to the actual input x'j
then y' is compared to the output of the system. . N
The performance measure of the system is J, the
expectation of d(y.y'). where the lattor is the cost i H(wi) = T(x:y) + Ty (x:w 1.ws,..... N), .
of deciding y when y' is the desired response. In the 1

context of this model, then, a satisficing . -
decisionmaker must choose a decision strategy, i.e., + T(ws:ws:•..:WN:Y)
two probability distrihit~ons on u and v, that result
in ' 1 1, where j is the maximum cost that can be + Ha~ ,,. (1.6)
tolerated. x I wN-°Y).

The modeling is developed in the analytic
cont¢.• of N-dimensional info~mation theory. There and is easily derived using information theoretic f

are two quintities of primary interest. The first of identities. The left-hand side of Eq. (1.6) refers to
the.e is ar:kopy: given a variable x, which is an tte total rate of activity of the system, also
element of ': alphabet X, and occurs with probability designated G. Each of the quantities on the right-

phand side has its own interpretation. The first term,

T(x:y), is called the throughput rate of the system
1(x) W - p~x) log pWz) and is designated Gt. It measures the amount by which

the output of the system is related to the input.
T ( w*w . . v =,Ox

and is measured in bits when the base of the logarithm Ty(X:Ws'Ws ..... rN-I) = Izwlws ...... WN-lY))

is two. Entropy is also known as the average .
information or uncertainty in x, %here information - T(x:y) (1.7)
does not refer to the content of the variable x. but
rather to the average amount by which knowledge of x

reduces the uncertainty about it. The other quantity is called the blockage rate of the system and
of interest is average matual information or designated Gb• Blockage may be thought of as tho
transmission: given two variables x and y, elements of amount of infor*ation in the input to the system that

the alphabets X and Y, end gisjn p(x), p(y), and is not included in the output. The third term,
p(xly) (the conditional probability of x, given the T(w,:ws:..•:wN-s:y), is called the ecoordimatioa rate
value of y), the transmission between x and y, T(x:y) of the system and designated Gc• It is the N-

is defined to be dimensional transmission of the system; i.e., the
amount by which all of the internal variables in the
yystem constrain each other. - The last term.

T(x:y) (H(x) - y() Ha(msjs,•,,wNa,y) designated Gn represents the
(1.2) uncertainty that remains in the system variables when

the input is completely known. This noise should not
where be construed to be necessarily undesirable as it is in

coeunications theory: it may also be thought of as
yCx) - - y p y o y interally-generated information, Information a•upplied
y () p(y) 2p(xy) log p~xly) by the system to supplement the input and facilitate

y x (1.3) the decisionmaking process. The PLIR may be
abbreviated:

is the conditional uncertainty in the variable x,
given full knowledge of the value of the variable y. G * Gt + Gb + Go + Gn" S( 1 . 8)

McGill [11] extended this basic two-variable
input-output theory to N dimensions by extending Eq.
(1.2): The bounded rationality constraint is expressed -

N by postulating the existence of a maximum rate of • -/

T(x:xs:...:x)() * - is ) information-processing, or a maximum rate of total
II....xN H(~) xlzs,..IN ctiv ty. 

0
Ina at which a given decisionmaking system

i*1 can operate without overload. Note that the addition
(1.4) of memory to the decisionmakimg model increases the

total number of variables in the system and may, -
For the mod-ling of memory and of sequential therefore, restrict the strategies that may be nsed to

inpits which are dependent on sacb other, the use of those with lower activity or wortload. However,
the entropy rate, B(z), which describcs the average executing a task with memory may restlt in a better
entropy of x per unit time, is appropriate: performance than that achievable in a system without

memory.

W(z) 0 lim 1 nix(t) x(t+l) .... x(t+m-l)]
m- - 0 In the next section, a model of memory is""(1.5) precented. In the third section, the model is used to

study the performance - workload characteristics of a

Transmission rates, T(x:y). are defined exactly like decisionmaker assigned with the execution of two

transmission, but nsing entropy rates in the conc.rrent tasks the dual task problem.

definition rather than entropies. . " " -

Conant's Partition Law of Information Rates
(PLIR) [12] is defined for a system with N - 1 .. :. .
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2.0 PERMANENT AND TEMPORARY NEMORY presentation, the assumption is made that the
decisionmaking system contains no buffer storage.

2.1 Introduction This situation is relaxed easily (9].

Memory is assumed to consist of both permanent The general memory unit applicable to both
ad temporary stores of information which may be drawn permanent and temporary memory, is shown in Figure 2.
pan by the algcrithas in the situation assessment and It consist of N variables. d1 through dM, as well as
hs response selection stages during the an input N-vector. D!X and an output N-vector D_ 3
ecisionmaking proesas. Permanent memory is defined Note that because permanent memory may not be revised,
are to contain values which are constant; that is. its model will not contain the input vector D
hey may not be revised or appended by the algorithms
hat access them. Temporary storage contains values r - --
hich may be revised by the algorithmsl for example, a I
Lsctete Kalman filter algorithm would include 90 d,. .
emporary storage of the beat estimate of the present M M
tate of the process, to be used in the next iteration DO

of the algorithm. Temporary memory has the effect of f W .-
tdding memory to the algorithms thomselvesl with
:.nporary memory available, the algorithms can 3,7.

.emember values from one iteration to the text. The aI X f,(X) z
livision of memory into permanent and temporary bears
s strong resemblance to the division of memory that is.,

sade in the cognitive sciences, into long-term and I
short-tear memory [131. fU(')

A third type of memory, called sensory memory, is LT4 IQi. Aa _a!WJTUBY5U.
also hypotheas.ed by psychologists. Information from
the environment is stored in sensory memory before it Figure 2. Model of UA subsystem with memory
undergoes any processings sensory memory might --_"

therefore be compared to a buffer storage model. The 2.2 Permanent Memory
latter allows the simultaneoue processing of
sequential statistically dependent inputs. Several It might seem at first that the addition of
different models have been developed 191 that depend permanent memory to a decisionmaking system might have
*a the *loss of inputs that the system receives. Shift not effect at all on the total information theoretic
register buffers provide the storage rule necessary to rate of activity of the system: if the values of dk
process input from a general Markov source. Fixed- for k-.2,...,,N do not change over time, then
length string buffers are a suitable model for the
type of storage found in machines. Variable-lensth i(dk) - 0 k - 1.2 ..... M (2.1)
string buffers are appropriate models for some types
of human sensory memory. Shift register buffers are Since totas activity is just the sum of the entropies
simple. but add a great deal of activity to the system of the individual variables in the system, it appears
and result in redundant processing. Fixed-length that the addition of N deterministic variables to a
buffers do not suffer from these deficiencies, but system should haove o effect on its total activity.
introduce a substantial delay which is proportional to However, the problem is actuslly more couplex. In
the length of the string. Variable-length string order to demonstrate the types of changes that occur
buffers have smaller average delay than fzed-length when permanent memory is added to the model, a
ones. but iat-reass the overall activity because of particularly simple example will be analyzed.
their relative complexity.

Let the permanent memory unit consist of one
The model of permanent memory presented in this variable, d,, wLich may be accessed by one SA

paper is similar to long-term memory, in that algorithm, f5 . as shown in Figure 3.
information is stored indefinitely and is accessible
by information processing mschsaisms. It is different- -"- - - - -"-'-
in that new information is being added continuously to d'
long-ters memory: the permanent memory model in this
paper provides no mechanisme for this addition.
Second, information may be lost from long-term memory;
this permanent memory model does not have a forgetting
mechanism. These differences are noted to indicate U
that. although similarities exist between the model of ,

memory presented here and that found in the cognitive
sciences, permanent memory is not intended to be a
model of long-term memory per so. """"

Permanent memory may be accessed by both the ITE
ettuation assessment sad the response selection .ASY
stages. However. in this paper, consideration will be
limited to the situation assessment stage. The Figure 3. Example of SA subsystem
relationships derived are the same as they would be with permanent memory
for the response selection stage, since the two halves
of the decisionmaking process are structurally Algorithr fA provides the average value of the t.'o
identical. component, of a vector input. Whenever a specific

algrithm is accessed by the decisiounskiug system,
It is quite possible that a decisionnaking system the vats ales of that algorithm are defined to be

may contain both buffer storage and permanent - active, and take values according to some probability
temporary units. However, in order to simplify the distribution which is a function of the input. When .
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that algorithm is not accussed, its variables are
defined to be inactive; i.e. they assume some fixed
valuo.*say 0, which they may not assume when they are p -- pl p-(-plg(p,0SpS1

active.(2.71

Now consider algorithm fs. which provides the
mean value of the two components ef a vector input. Te same quantities may be calc-Alsted for realization
There are two similai ways o. !±mlemonting this R. The rates of throughput, blockage and noise are not
algorithm. The first does not access ',ermanent efce y te sal srcua ifrne i
memory, although there is some implicit memory In the algorithm f'18  the rate of coordination does change.
algorithm itself: Consider Eq. (2.6): a13 is now equal to 3. because w,

is now active when u-l mud inactive otherwise.
-, 2 1 w, + x 1 ,* Therefore. the first term of Eq. (2.6) is increased by

the amount I~p(u-1)I. Mse second and third terms
*a w /V ; =W (2.2) remain the same, even though there is now some

a Ucertainty associated with the value of wl. Knowledgce
The second does access permanent memory: of the value of u resolve* that uncertainty, so that

dl--2 R E(W)0 (2.8)/
ua

defined outside the algorithm f,

Is 41 w1 W=-x + asSimilaIrly. (W)1 is unchanged. Only the structure of
the algorithm' has boen changed, so the output remains.

w w/w, z -= 8 (23 the same, and the last term of Eq. (2.6) is unchanged.
3 Therefore, the addition of one unit of permanent

In the second example, the variables v1w 1,w I memory to the SA subsystem provides a total increase

are inactive when the algorithm is not accessed. In i ciiyo ~~-).I eeai loih
the first example, however. w, must retain the value directly accesses Ajvalues from permanent memory, and
of 2 throughout, since no means have been provided to no thrcags remd inhe loihs, hnte
re~initialize Its value etch time the algorithm is 2 Incremental activity of the system, AG, Is gIven by

accssd. 1. Is now possible to compare the levels of U
activity of the system with the permanent memory unit
and that without. First consider realization A. The AG L B p(u-i)1 (2.9)
throughput, blockage, and noise rates of the SAii
subsystem are given by 191:

t.B ) .()3.0 THE DUAL-TASK PROBLEM

b - w(x 3.1 Itoduction
O = 0(u)(2.4)

a It has been observed that if a person must
execute two tasks by switching between them, his level

with inputs arriving once every second, the of performance. may be different than when he is
coordination rate is found as follows: alowed to confino himself to one task [131U. [141,

even if the arrival rate for individual tasks is the
U ci same for both cases. If there is sone synergy between

-u i (w') + i(u) + i(z) i (u,W.z) the two tasks-that is. if the two tasks are related
c J and executing one actually helps the execution of the

i-1 J-1 2) other-then performanct may Improve. If, on the other
hand, the two tasks are dissimilar or simply do not
reinforce each other, performance may decline from

Ner*, wjI represents the J-th variable of algorithm il what it was in the single-task oass. It is this
and V rpeet th eniest f in the SA latter phenomenon that will be explored In this

subsystem. Finally. ei is the number of in~ernal scin
variables of algorithm I which are active or inactiveTer aenuruspsiewys nwhc te
according to the value of u. Equation (2.5) reducesThr aenurospsil wys nwic te
to: dual-task problem might he modeled. For example, if

the two tasks to be performed are assumed to be so
U different from each other that they demand different

I - ci ~p~u.i)1sets of algorithms, then a pre-processor may be
c ~. required for the system. The pre-processcr determines

i-i which type of task each input represents and then
allows access to a set of decisionmaking algorithms

U ciappropriate to that task. Of course, the activity of
+ ~ ~ (wi)- ) + i(z) (.) the pre-processor increases overall system activity

u nj u and may, therefore, lower performance. On the other
i1 hand, if the two tasks to be performed are assumed to

be similar but non-synergistic, they may be able to
use the same basic sets of algorithms, as lorg ax

The symbol R denotes the binary entropy of its these algorithms are adaptable to each task through
argument, given by: two different sets of parameter values stored in

permanent memory. Notice that there is~an Implicit
need for a pro-processor in this problem, since the
algorithms must have some way of knowing which type of
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t has be*& received in order to determine which0
of values stored in mtimory to access. Overall
vity is Increased in this formulation as well by D
necessity of switching between Bets of IS

ruation. An *exmple of this second problem is a I

1 switchboard operator who has to. process both
min& and outgoing cslisa although the tasks X

Are the same basic. action. they differ with K
-sot to the information required to execute the

t s nThe second problin is addressed in this paperil
first oeu will be presented at a later time.

In order to simplify this problem, several 1"

imptions rill be made. First, to circumvent the DECISiONMAKING SYSTEM
I for a pre-processor. it is assumed that there are

separate inputs to the system. RA and xp. which Figure 4. Model of decisionmaker with permanent
members of disjoint alphabets. X and 

1
B. Only memory for Dual-Task problem

of these inputs is active Ct s•y ;Iven time: if IA

active, task A must be performed, and if xB is
Ive. task B must be performed. Inputs arrive at 3.2 Information TZ.,orstic Analysis

system o*ce every second, and there is a known
bability ID (representing the task division) that In order to measure if a change in performance
will be aotive at any given time. level occurs btween the single-task sad dual-task

situations. a performance index Is required. The

If inputs are not synergistic, then they are index I that is used is the probability of error. In .

umod to be statistically independent. It x is terms of the quantities defined in section 1 and
*rated independently every v seconds. tLeor depicted in Figure 1 (with the output of the system

now equal to a),

d(o.a') = 0 it a a a'

afore. ik the results rhich follow, entropies 0
.ber than entropy rates will be used. Activities are and therefore 7, the expectation of d(so.x) Is

toted by 0 in place of i for activity rates. The
.ts for G are bits per symbol (as opposed to bits
second for 0). Hote that for the problem with p " (i)d(..•') -pvob(aOfx) (3.4)

eorgy between tasks. the ass•uption of dependence 
-

:ween sequential inputs wuuld be appropriate; a
tfor storage model would be added and activity rt"e: Iec.use two distinct tasks are being performeZ, A
tld be used in the analysis. defined as the probability of error In executing a

type A task, and 3B as the probability of error in a

The basic model for the problem is shown in type B task. More precisely.
lute 4. The variable u, which acts independently of
a input x, controls which uf two situation
sesmoent (SA) algorithms. fl and f2 . will be I a A.5 ($.5)
esased. The decision strategy for a system such as

to may then be defined by the probability 6 that a
equal to 1. For simpli~ity. it is assumed that Note that these quantities are independent of the- -

9 purpose of both tasks is meroly to assess the task division TD, the probability that x a IA. but
tuatiom. so that a is the output (no IRS stage). w1l1 be dependent in general on the decision strategy
* variables a1 and '2 are represented as switches S. In fact. if it is known how the system performs
tornal to the algorithms only so that their function when pure strategies are employed (either u in 1 with
y be highlighted. Figure 4 does not explicitly probability 1, and algorithm f, is always used, or n
pict the mechanism by which s1 and 82 take their is 2 and algorithm f 2 is slwayt used), the performance
lInes. but only that they are dependent on-the value of the system under the mixed strategy S (algorithm fl
a and on the values of zA and xB. is used with probability 6) is simply a convex

combination of the performances using pure strategies

eocifically. they take values as follows: .ie.

A if i ) i& xlo sn h b i ) + (1-6)(• l 6 02)

a " if a- i, ze Z3 t i-, iA,3I O- l (3.6)

0 if n i - (3.2) .
With tLis definition of task performance, it is also

possible to define an overall performance index for

a addition to •l and s2, allorithms f, and f 2 contain the system: ...

s and *2 internal variables. Fizally, DA and DB are 7.
to two sets of information or data needed by the IM - (T)AG + (1-TD)I3 (6) (3.7)
lgorithms to process input from XA and 13.
espectively. It Is assumed that both algorithms use
It of the information in DA when performing task A +-':'_-.. .ad all of h formati k B. If errors on one task are more detrinential than

errors on the other, then weighting coefficients may , . '-.,

be introduced on the right-hand side of Eq. (3.7).
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The activity of the system will change both as a
function of the deei.io: strategy 6. and as a function
of t'ae task di-vjSiOz TD. In fact, G. the total
activity of the system, is convex both in 5 (witla a
fixed TD) and In 7D (with 5 fixed). The convexity o fG9 in 6 has already been shown [S)i the convexityt -

of G In TD will be demonstrated. I 0*

Assume that only task A is being performed. Note 80
that under this assumption, the need for variables a&I
and a. disappearaj the algorithms may be directly
connected to data base DA. Tn this case, the levels
of activity for a decisionsmaker with two SA algorithms
f sand fs. containing a, and aa internal variables,
respectively. and a decision strategy 6. are given by:

Figure S. Representation of 6 vs. I for binary

Gt *G 1(x)variation of pure strategies

6 + R(U) -NS) 2 Lot dk represent a single variable of the permanent
(a.a ES)O + B(s) + Sp(U..i6 (38 (bmoty 'nit, let D represent all the permanent memory

a (hot% A and DB), and lot W represent all of the
internal variables of both algorithms f. and f,j then
the coordination of the system performing two tasks is
given by:

[ho quantity A is the entropy of a binary variable;

ano d js 1~o are defined to be the internal 2 a ~
o dntln falgorithm: f, and f,, respectively, Gc Ca + Wed~ + E1s + 1(aC) +' 3(z

whore internal coordination is defined as a

i 1 H( 'Ii) - i.o + R~d ) -3(W'1,5.5 'D (0.13)
e=prob(u-i) k ~~ui HVu)

J-1 (3.9)k

and Wi represents the set of all of the %ariables of After much manipulation. Eq, (3.13) may be reduced to
algorithm I. The total activity of the system is then
the sum of the quantities given In Eq. (3.8): *(a4+)()0

a-1(x) + 8(a) + (a,+ as +1l)3( 2

2 4 ~p~u..)((Th(g"zxXA) + (1-ID)(8!lXB1)l
+ P(U..i0g (3.10) i

2- 2 i
+ T(.':si lu-i) + 3(a) (3.14)

lots that all of the above quantiti a are conditional
~n task A being performed: e.g.. a could be written 1- -

'gcilxdXV. It has been shown (51" thnt UG is convex in
,he decision strategy. I.e.:

and the total activity for the system performing two

GM) (8)(Glnal) + (1-8)(Glu-2) (3.11) tssi i.r y

6 NW(x + IRW + (uz+u2+3)I(8)
Iherefore. using Eqs. (3.6) and (3.11). 0 may be found
?arametrically as a funccion of 3 ior the single-task 2
?roblem, as shown in Figure 5.

The dual-task problem requires the variables a, ~.i (D(ls~)+(-D gls.)
and a2 to he Included in the model. It is still thei-
:ass* that2

Ot + 
0b= 3(x)+ T(wj:silu-i) (.5

a - (u) - ()(3.12)%

There are now two additional 3(8 terms; these Pre due
to the presence of the too additional system
variables. s, and as. The internal corordinstlon term
is now a convex combination of the liternal
coordInationa found when orly task A or B is
porforsmid. Finally, the last term of Eq. (3.15).
which does not even appear in Eq. (3.10):*
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+ I(D)A + i i iOi i i

This I a 1 a ,

trnite bewe .i an w ie ht loih

* T(sa lsau~i) = H~s lu~i) - 9 vils lu'~i)• (3.16) ltuS = [(TDI)Alz) + (1-Th)il3 lx)1..

• ÷+ I( h)IA(x) + (l-Tb)1f izl)1":
* This may be interpreted as t~'e amount of information• ,,

transmitted between siand w :, given that algorithm i

is teiag used; i.e.. it "is the extent to which + [(e 5 +us+1)3(6).
variable v reflects which task is being performed. a
Since 2

+ '!p(e.-i)[TD(-p ,X.) + (1-TD) (SsX,')J
:(s lu-i p(u-i)H(TD) (3.17)

i-i (3.23)

then

Now compare Eq. (3.23) to Eq. (3.15), using the

O's T(T$ Sp(u=i)H(TD) (3.18) results of Eq. (3.22). the fact that 9(6) Ž 0. and thefact that transmissions moust also be non-negative. It

followb that Eq. (3.19) does indeed hold, and H is

It will now be shown that for a fixed value of 6, convex in the task division. In fact, if a mixed
0 S 6 - 1, G is convex in the task division, i.e.., strategy 6 is being used (0 ( 6 ( 1). or if any of the

internal variables of an algorithm in use reflects
which task Is bsing performed, i.e.,

G(TD Z (TD) (Gixe! A + (l-TD)(GlxeL) 0 5TD 1 1
A (3.19) T(w :sl uI-) ) 0 (3.24)

Sii

The right-hand side (RES) of (3.19) may be found using then the inequality of Eq. (3.19) will be strict.
(3.10):

RIIS - (TD) ([A(5 ) + HA(z) + a•u+l)3(6) 3.3 Effect of Task Division on Performance

To see the effects that this result has on
2 iperformance, consider a particularly simple example.

+ p(u..-)(glxSll] It is assumed that the single-task activity or
I workload versus peformance curves are identical for
Si- task A and task B (this implies that J and JB are the

B . same functions of 6: see Figure 6a). Aow consider the
+ (1-TD)HB (x) + V + n+u 5 +l)I(6) evolution of the G versus JA curve as TD changes from

0 to 1. It is meaningless to define JA for the
2 single-taik case in which task B is always performed

""÷ • plu-it)(gilxcX8 )] (3.20) (TD - 0), but for very small values of TD, IA is
deilned as in Eq. (3.5). To find the 0 versus JA

.i-l curve for TD = 0. consider Eq. (3.15). Since a(TD) t

0 for TD = 0, its lost term is small (see Eq. (3.18)).
The rest of Eq. (3.15) reduces to Eq. (3.25):

Here, Ba(x) and Ha(z) are the entropies of x and a
which occur when only a single task is executed. The -"

probability distributions fo x and z in the dual-task G(TDZ0) z oGlxs%) + U(S) (3.25)
case are a convex combination of those for the single-

* task cases,

"In other words, the 0 versus YA curve will be the same

p(x) (T3)p(xlxsXA) + (lTD)p(xlxeIB as either single-task curve, with the quantity 28(b)

0 -M T I added on due to the presence of variables s, and as
p(x) - (To)p(zlzCZ ) + (1-To)p(zls.ZB) (see Figure 6b). As TD increases, G will continue to

""A- (3.21) increase up to some point (because of its convexity in
""D), dependent on the value of the last term of Eq.

(3.15) said the values of B(x) and 9(z). For TD equal
The n a probability distribution is the convex to 0.5, the G versus I curve will have the general

" " cobination of two others, as in Eq. (3.21), then shape shown in Figure 6c. Finally, G will decrease
( -16): until TD 1- I and 0 versus JA is again as shown in

Figure 6b. For a fixed value of 6 then, say 650.2,
the workload versus task divisixo curve will be

H(s) - (T0)HA(.) + (I-Tn)'(x) similar to that shone in Figure 6d. The maximum

"0 TD I activity need not occur at TD -0.5.

H(2) (Th)HA(z) + (l1-T)UB(z) (3.22)

"and it follows that Ev. (3.20) can be written as:
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4.0 CW4USION

In order to obtain more realistic models of
human* carrying out information processing and
decisionmaking tasks, it is necessary that memory,
whether internal to the decision process, or external

ell in the form of data bases, be modeled. Three classes

G -,---- Gia- of models are described: buffer storage. permanent
Smemory and temporary memory. The modeling of

permanent memory has been prsented and illustrated
through its use to the analysis of the performance-

o)TDIO(i'8) J| b)TOaO or JA workload characteristic of a human decisionmaker
orTD. I.A) TO-t executing a dual task.

.. 0 In order to test experimentally these predictions
"G the model for the dual-task problem as defined here,
Smc several criteria must be met. First, the two tasks

must be similar enough that the same set of algorithms
T -may be used for both taskss however, they should be

0 TO.O.5 JA 0 8M0.2 I To independent enough so that execution of one task does
not aid in the execution of the other. Second, it
should be necessary to switch between tasks, i.e., two

different tasks may not be performed simultaneously.
Third, individual tasks should arrive at the same rate

Figure 6. Performance vs. Workload and Task Division in the dual-task test as in the single-task test.
Finally, this rate of presentation should be near toNow consider what happens to performa:nce if the the bounded rationality constraint of the

maximum total workload constraint is givjn by the decisionmaker, since it is hypothesized that it is
value marked Ga in Figure 6, I.e., the system is this constraint that leads to performance

.required to pe rorm at an activity level 0 S Gmax. In degredation.
the two single-task cases, the system is unconstrained
and may use any strategy 0 1 6 1 1. However, for this".example. when both tasks arrive with equal pwobability $.0 ACKNWLEDMEN

(TD - 0.5). t'!: tat of feasible strategies is greatly
reduced, anA performance is limited to being •very This work was carried out at the NIT Laboratory
poor. Also, the particular strategy of 6 - 0.2 may for Information and Decision Systems with support by
only be used for task divisions close to 0 or 1 (see the U. S. Air Force Office of Scientific Research
Figure 6d). under contract No. AFOSR-80-0029.
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HUMAN DECISIO1M4AKING IN DYNAMIC ENVIRONMENTS
WITH INCREASING INFORMATION PROCESSING DEMANDS

Daniel Serfaty, Eric P. Soulsby, and David L. Kleinman

0 CYBERLAB, Dept. of Electrical Engineering and Computer Science
University of Connecticut

0."7/! Storrs, CT 06268

ABSTRACT

In order to describe the overall behavior of a man- sionmaker's performance and behavior were studied as
1 achine system it has long been recognized that there task parameters were changed 11-31. This paradigm was

•exists a need to determine the level of "workload" motivated, in large part, by the C
3 

problom of target
/ imposed on the human operator in achieving design objec- selection. In this situation, targets of various type -.

tives. One of the objectives of workload related move across the display scopes of the human operator, .
research is to determine areas of high workload, a sub- vying for his attention. Each target has a different
set of which entails the domain of information over- threat value and processing time requirement. The
load. Several mechanisms of adjustment to increasing human, therefore, is faced with the problem of se-
information processing demands are aviilable to the quencing tasks dynamically so as to maximize the per-
decision maker; e.g. queueing, filtering, omission, and formance of the system.
employing multiple channels. These mechanisms of Fig. 1 shows the fundamental decision loop that is
adjustment have an effect on the human's operative considered in our approach. The human information and
behavior and subsequent strategy. When presented with decision process involves 1) whether to process a task ,
increasing information processing demands near or in or gather more information (i.e. monitor); and 2) which
excess of his capacity the decisionmaker exhibits one of N tasks to act upon (N is time varying), in
changes in operating methods to avoid crossing an over- order to maximize the system performance. The decision
load threshold. i!ence the operative methods of the loop is dynamic in nature. As time evolves, tasks of
decisionmaker are efficient from the point of view of
performance, while being economical froig the point ofview of workload. -." •

The Dynamic Decision Model (DDM)Ais a normative- S
descriptive model that has shown to provide an excellent
representation of human information processing and
decisionmaking in a dynamic multi-task amironment, In
the present effort,'A sensitivity study was performed
on the DDM in an attempt to explore the nature by which
various dynamic task attributes affect human perfor- r"- - - -- .- --
mance. In particular, changes in parameters such as the_. s, i,,,,., _
number of concurrent tasks, task velocity, task proce- " ' "-- ' ......
ssing time and task value, were investigated in con- ,
junction with existing notions concerning human operator
workload. This global approach not only emphasizes the
performance level the human operator may attain but also Fig. 1. MULTI-TASK DYNAMIC MONITORING/DECISION LOOP
the tactics and strategies he uses to achieve it.(...

Results indicate a general agreement with existing different value, duration (proc~ssing time) and oppor-
workload/performance theories and some inherent human tunity window demand the operator's attention, while
information processing limits are identified. Extensive others depart. The opportunity windows shrink with •
experimental studies were performed along these lines time as the tasks approach Lheir deadlines.
by using an experimental paradigm which abstracts some In a supervisory, decisionmaking situation the -.

feature of a C° decisionmaking situation. They human operator must process information presented en
quantitatively confirm, to a large extent, the DOM route to choosing an .,ppropriate course of action.-.**
analytical predictions of human performance sensitivi- With regard to the multi-task moi itoring loop, several
ties. In particular, the data show an interesting sources ofuncertainty must be de lt with. These
feature of human behavior: the ability to adapt to high include human produced distortion in observing vari-
workload situations by discriminating some alternatives ables presented on a display. unc• rtainty in deter- 9
and maintaining performance through some "satisfaction" mining the status or state of the system, various
criterion. A subjective workload rating technique hypotheses as to possible courses •f action, and the
(SWAT) was used to confirm the perceived increase in difficulty in envisioning conseque •es of actions nub-
information proc sing demands. ject to the overall task objective Clearly all of

/1 INTRODUCTION these sources of uncertainty are influential in de:er-
mining the amount of worload imposed on the human.

1.1 Backgrould and Motivation of the research In the present paper, a Joint analytical - ex:eri-

Previo$ research at the University of Connecticut rental sensitivity study was performed to investig3te S
CYBERLAB w -saimed at modeling single human decision- hiw changes in the information processing and decision-
making processes in multiple task environments. The r-king load affects the decisionmaker's performance
experimemal part of this effort focused on developing ai.d operative behavior. The objectives of this effort
a canon ial decision paradigm through which the deci- were =ultifold:
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(l) To analyze the effect of variations in the workload
imposed on the operator in regard to his performance
and operational behavior. 'L..

(2) To identify and understand limits on human informa-
tion processing and action selection, especially in
the case of very high workload, and attendant
decreasing performance.

(3) To try to find appropriate measures of a priori
objective task difficulty and to compare them to ------
previously known measures [4,71.

(4) To validate the Dynamic Decision Model (DDM) pre- "'.•.,.''o "
dictions of human performance across a wider range , ,.,,.,u.-c.,,
of task parameters. Specifically, to do a model- I '.'-'.'
data comparison while varying experimental param- I--J , L.---------"--"
eters such as the number of task channels, the •,,s ,aco~m n--

velocity of the tasks, the task values, and the
processing time range.

(5) To compare experimental results with subjective Fig. 2
measures of workload. The technique used here is Me( ) tdo. e a ic fh athe SWAT (Subjective Workload Assessment Technique) Model (OCM) methodology. The statistics of the task '

the states {Ti,EI} are, in turn, used to determined the
[61. first and second order statistics of the decision state

The paper is organized as follows; in the remainder (TRi,O} time required and {TAi,OAi) time available.
of this section a brief description of the Dynamic The statistics of the decision states along with the
Decision Model (DDM) and the experimental paradigm used task values, ri(t), are combined to determine the .
to validate it will be given. Part II will describe attractiveness measure, Mi(t), of each task in the
the simulations and experiments done for the sensitivity opportunity window. Subsequently, the measures are
studies after which Part III will describe some of the used to generate the probability Pdi(t) of acting on
main results in terx's of model predictions and model each of the N tasks and the probability Pdo(t) of not
data comparisons. In Part IV a study ol a proposed acting on any task (or the monitoring probability,
apric.ri measure of 'task difficulty in terms of the ratio pdm(t)).
of average time required/time available will be pre- The DDM is capeble of predicting various perfor-
sented. Part V discusses a comparison between experi- mance measures, such as: the total reward earned, the - . "
mental results and subjective workload prediction using percentage of total possible reward earned, the number
SWAT. Comments on the implication of the results of tasks processed, the total amount of time spent
obtained on workload, human strategy changes and the acting on tasks, etc. [1-31.
DDM's predictions, as well as considerations leading to 13 h xemt Pri
future research directions, will conclude the paper. 1.3 The Experimental Paradigm

1.2 Review of the Dynamic Decision Model A simple, yet realistic, computer controlled ex-
perimental set-up was considered as indicated in Fig.3.

Our main analytical tool will be the Dynamic In the experiments, the subjects observe a CRB
Decision Model (DDM) previously developed by Patipatti, screen on which multiple, concomitant tasks are repre-
Kleinman and Ephrath [1-31. This normative-descriptive sented by moving rectangular bars. The bars appear at
model contains several interesting features. First, the left edge of the screen and move at different ve- %'='"

the analytic framework of 0DM is based on optimal con- locities to the right, disappearing upon reaching the .. ... "-.
trol, estimation, and semi-Markov decision process right edge. Thus, the screen width represents an
theories. Thus, this approach provides a general "opportunity window".
methodology for analyzing dynamic decisionmaking under The height of each bar corresponds to the reward
uncertainty. Second the model introduces the important (value) of the task. The amount of time required to
concepts called the "task" state and "decision" state, process a task (in seconds) is represented by the
The task state is the detailed description of the inter- number of dots displayed on a bar. A task is processed I F
nal variables associated with each task (position, by the subject when he pushes the appropriate push-
velocity, type, etc.). The decision state, which is a button as shown in Fig. 3. By processing a task suc-
functional transformation of the task state is the mini- cessfully, the subject is credited with the correspond-
mum number of variables that provides different infor- Ing revard (ri), and the completed task is eliminated
mation for making decisions (time available, time from the screen. An attempt by the decisionmaker to
required to complete each task). Third, the DDM act on a task that cannot possibly be completed (i.e. * -
employs the widely - validated Kalman filter theory in the time required is greater than the time available)
an information processing submodel to provide the con- constitutes an error. No partial credit is given.
ditional mean and covariance of the decision state.
Fourth, and perhaps most important, the DDM explicitly
incorporates human limitations in the information pro-
cessing as well as in the decision stages. These in-
clude the reaction time delays, randomness (i.e.
observation noise), limit.d combiadL.ial capabilities .....____'-___-___•

and randomness in decisions. l TO

A block diagram of the DDM is shown in Fig. 2.
Each of the N tasks in the opportunity window is re-
presented by a dynamic system acted on by disturbances
to account for the nonstationarities .n task character-
istics. The human's perceived outputs fyj) are de- -..
layed, noisy versions of the task states TxTi} and are
contingent upon the monitoring process. The perceived •
outputs are processed to produce the best linear un-
biased estimates of the task states {-T'ri} ad their
associated covariances (Ei} via a Kalman filter-pre- """ '. "' -t..:i-
dictor submodel previously used in the Optimal Control Fig. 3
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In the present experimental paradigm, from which interview was designed to try to determine the various
the DDO was developed, several factors Influence the subjective strategies used. Overall, it was interest-
decisionmaker's workload. The humon must process infor- ing to remark that although each of the subjects used
mation involving the amount of time required (processing different strategies to maximize their rewards, the
time dots), the value of a particular task (height), and intra and inter subject differences in performance were
the position and velocity of the task relative to the minor. Therefore, the experimental results presented
tasks's opportunity window deadline. All of these fac- in the next part will describe only the mean performance
tors must be considered for each of the N task lines and not the inter subject variations. . ,
(channels) that are simultaneously vying for the deci- "R-.M-.CI.
sionmaker's attention. By processing this information III RESULTS AND MODEL - DATA COMPARISONS
(i.e. reducing his uncertainty about the variables pre- Only the most significant results will be presented
sented), the decisionmaker then uses his knowledge of here. A complete presentation of the DDM sensitivity
the "state" of the system to develop an appropriate study can be found in [5].
choice of which task to act upon. I11.1 The Sensitivity to Task Velocity

11 METHODOLOGY FOR THE SENSITIVITY STUDY 9
With regard to task velocity three separate D0,,

11.1 Model Simulation computer simulations were performed:

On the basis of existing notions concerning the 1) all tasks had the same velocity which was varied
effect of various task parameters on the human opera- from 25 screen units (su) per second to 200 su/sec.
tor's performance and subsequent workload [4,7] four 2) all tasks had the same mean velocity with uniform
task attributes were considered. They include: distribution range of +25 su/sec. the mean varied

A) different task velccities, from 25 su/sec. to 175-su/sec.

B) different task values, 3) all tasks had the same mean velocity of 100 su/sec S

C) different task processing times, with uniform distribution ranges of 0, +25, +50,

D) varying the number of task lines (channels) to +75, +100.

be monitored. Results from part (1) are in general agreement
As indicated in Fig. 3, the task velocity is in- with our hypothesis concerning the relationship between

versely related to the time available in which to suc- velocity and the time available to process a task. As

cessfully engage and process a task. More specifically, expected a sharp decrease in the percentage reward

the time available to process task i at time t is given earned was observed as the velocity of the tasks was
by increased. It does appear, however, that there is a

tendency for the model to reach a "saturation point" as
L-ti (t) indicated by the nuiber of tasks (20+2) completed and -

T(t) - in the total expected reward earned during the simula-
i tion duration (90 sec).

where In part (2) of the velocity study, the mean veloc-

L is the length of the opportunity window (1024 'ity was increased in a manner similar to part (1) but"-
screen units) - 1 inch - 85 s.u. with some uncertainty in this value. Results were

i is the position of the task from the left edge expected to show a general agreement with those obtained
L(in sreen units) in part (1), which they did: The DDM performance was

V is the velocity of the task (screen units/ affected very little by the small uncertainty (±25%) on
i the task velocity.

Finally, part (3) atLempted to investigate the
It was postulated that by increasing the average effect of various amounts of uncertainty on the velocity

task velocity a decrease in performance (as measured by of each task as perceived by the information processing
the number of tasks completed and the total reward portion of the model. A mean velocity of 100 su/sec
earned) would be obtained. A similar relationship be- was chosen for all the tasks with the interval over
tween performance and the average processing time of which the velocity was upiformely distributed (e.g. the
the tasks was expected, since as more time was required velocity standard deviation) being increased. Results
to process a task fewer tasks could be completed prior indicated that the model was able to successfully over-
to leaving the opportunity window, come the perceived uncertainty in task velocity and

By increasing the nuaber of distinct task values develop a strategy to improve performance, although
or the number of task channels (lines) which must be this may have been a by-product if having more than
monitored simultaneously, a decrease in performance was enough time in which to process the tasks.
expected due to the increased demands placed on the in- The experiments done for the sensitivity study on r
formation processing portion of the model in conjunc- task velocity paralleled the simulation study (2) where
tion with i~ncreasing uncertainty (i.e. conflicts) among all the tasks have the same mean velocity (with a small
decision alternatives, uncertainty of +25 su/sec) which was varied from "slow"

11.2 The Experimental Program to "fast". Here again the general hypothesis was that -
the performance of the subjects (in terms of percentage

To parallel most of the sensitivity studies per- of reward earned) will degrade as the velocity of the
formed on the D0D1 by model simulation, the experimental tasks was increased, due to the corresponding decrease
paradigm described in 1.3 was used. For each experi- in the time available to process a task (i.e. the -.
mental setting, 3 different subjects, all graduate faster the task, the sooner it reaches the end of the
students in the Department of Electrical Engineering opportunity window). Fig. 4 presents model/data com-
and Computer Science at the University of Connecticut, parison in terms of the percentage of reward earned
were tested on 2 different experiments (random arrivals) and the total rewar( earned. Model predictiuns and
yielding 6 values for each average data point obtained, experimental results were in excellent agreement up to
The duration of each experiment was 90 sec and the sub- the "nominal" situation of a mean velocity of 75 su/sec
ject had immediate visual feedback on his overall per- (a task of moderate velocity). Beyond that point, the
formance. The subjects were trained on various experi- human subject performed better than the model, re-
mental conditions; however data was taken only after a flecting a process of adjustment by the human to the
certain level of subjective confidence was felt by the increasing workload demands (an ability the model
subjects. doesn't have at present).

At the end of each sequence of experiments, a short
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cessfully segregate more desirable tasks to be processed

.!s j from lesser ones. By doing so, consistent performance
+ + + is achieved. Hence it appears that the range of possi-

7% ble values produces a strategy which is able to com-
13 pensate for any conflicts in choice such that a "satura-

tion level" in performance is obtained.
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Fig. 4 SENSITIVITY TO VELOCITY

In summarizing the velocity study, it seems appar- 10

eat that the most influential aspect of velocity on
performance manifests itself in the resulting time
available/time required trade-off that must be evaluated
in task selection. Clearly the information processing 4+"J+t4f+I 1 , II 14I1111 1111 t ,I f..'....I
aspect of uncertainty in the perceived velocity played 2 2 3 4 s 4 7 a 8 t0
a lesser role in determining the resulting performance. rnwer of distinct task values
This result is in agreement with existing notions re-
garding available time to process a task and the per- Fig. 6 NORMALIZED REWARD
formance achieved, and fcrms a central theme of the It appears that a heuristic measure of an a
workload theories which subscribe to the notion that the priori absolute attractivity of a task i is a ratio y"
rate at which tasks must be processed is indicative of %
the workload imposed on the ooerator. In high workload Value of task i ,.
situati-;ns, the divergence in performance between model yi - Time required to process task i
predictio.,.s and human subjects seems to signal the fact
that the human develops a strategy that adapts to high which induces a multi-level threshold strategy: .
workload demands (high task speed, short interýarrival 1. for yi>y' "Always try to process task i"
times). 2. for yo<y" "Never try to.process task i"

111.2 The Sensitivity to the Range of Task Values 3. for y <ny<y' "Depends on concurrent tasks"

In this study it was hypothesized that by in- For example: for the simulation with 10 diffeeent task
creasing the number of possible reward values of the values and 5 different processing times the values y'=
tasks a resulting increase in the uncertainty of selec- 6.2 and y"-4.3 have been found.
tion due to conflicts would appear. Results of this Note: No experiment was performed in the study of sen-
part of the model simulation study showed consistent sitivity to the number of task values.
performance, as measured by the total percentage tasks M1.3 Sensitivity to the Range of Task Processing Time
completed, across the range of task values. It seems _'__'..__._ _

apparent that the model was able to successfully dis- In this study, the range of possible seconds
criminate tasks of low value from those of high value needed to process a task was varied from all tasks
and adopt a strategy reflecting this segregation. having the same processing time of 1 second to that of

As a way to verify the assumption that the model the tasks having anywhere from 1 to 8 seconds processing
was able to discriminate high valued tasks from low time. The velocity of the tasks was chosen to be a •
valued tasks, a comparison of the actual reward earned nominal value (100 screen units/sec) corresponding to a
and the mean value of the tasks multiplied by the number moderately paced task with a small standard deviation
of tasks earned was performed (see Fig. 5). Clearly, about this value. Here again performance was expected
here we see that the model was able to segregate the to decrease as a result of the time available/time re-
more desirable (high valued) tasks to be processed. quired trade-off that affects the decisionmaker's

With regard to overall performance, a normalized ability to process tasks prior to their deadlines. In-
reward (actual reward earned/average task value) was deed both model and experimental results confirm this
computed and plotted in (Fig. 6). Here again the con- hypothesis (Fig. 7). - O
sistent performance achieved by the model is exhibited. As can be seen from the plots, the model and human

Sumnari:ing the study on the relationship between are in good agreement up until the nominal case of
the performance achieved and the number of distinct tasks whi'ýh had a processing time rainge of 1-5 seconds.

task values, it appears that the model is able to suc- After this nominal situation the human processed tasks
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human, by trying to process less information as the
workload increases, is able to commit fewer errors and

100 + NO therefore to achieve a higher performance than the
N data model prediction.

* ~ 5 100I + * d

:40040 i. 60

i 6 ~ ~~~1 0 , 1 -- -- - -
S4 40o 4•......•.

20 , 4 -"-,%
2020 +proceSsing time . . . .+•t-H tH~lo*JMO½- t+'' -• range (sec) ,H}•t~llilll.lllllilttlllj14•.tober of .°.-"

1 1- 2 I.3 I- I I- S I 4 1 -7 1-8 2 3 4 5 6 7 a , 10 Ch anne ls

1-2 1. - 15 1. - 'o 40 a

4 +1420
I+

3 
Piamber of

1- 3 4 5 1 7 a - 10 .0 .

withI-3 -4 go processing timo theaeg le36 2 .20 +.-. .•" " 'i"

Fig. 7 SENSITIVITY hm RectS a c GE ig. 8 SSIIT TO TCE NUME OFNGE . -AE

s tha acn fchannetswith processing times which were below the average value std o sensitiities t
of the tasks presented to him. This change in the type t.theratio
of tasks processed by the human reflects a chand e in Fig. 8 SENSITIVITY TO T)E NUMBER OF CHANNELS

. that accounts for the better performance ".Aerae.tme%"aiabl

achieved as compared with the model. Iz other words, IV AN A PRIORI atASURE OF TASK DIFFICULTY: THE p RATIO
the human adapts a more efficient behavior as the in- sim-f e n vtp'mcb
formation load (range of possible processing times) in- isfa ia measular the sotfy a orit as difivtesr t
creases. He discriminates among the tasks that are velocity and processing time range, it was hypothetxzed
favorable (small processing time) from those deemed un- that the ratio p Icabeaslshw tat hfavorable (large processing time hence smaller time

available tok roce th the prior to its deadlnne). "-.ef.l

th1 u a. s eecsv t e theN r a n. Average time requiredof r wa"."
earned dereasesit yor tak lnesar e o asChnnA Average time available

In this study, it was hypothesized that by in- e
creasing the number of task lines to beamondtoredosn-d is a suitable measure of a urnori task d officulty ex-
nom l hbted by a specific dynamic task in the current ex- task

to increased demands on the information processing and i.Vnomie vlctaction selection capabilities of the human. Fig. 8 perlmental paradigm. It can be easily shown that the ii...••

shows the performance achieved by both the n the following formula:

the human. As expected the percentage of rewad legtn+l of
earned decreases as more task lines are presente d to whr veoct opportunity
the decisionmaker. The human again outperforms the os -- -i asrnb in do ).'
model as the number of task lines increased beyond the- max nd mits o : time vuofs)

nominal condition of five lines. This appears to be per task
due to the fact that the human adjusts his behavior in V is normalized velocity -. " -. "."
an attempt to keep his performance constant when the tumax i"-.unit.time
number of tasks to be monitored simultaneously ap-
proached his short term memory capacity (5-7 lines)V is the average nominal

The plotum of tas nesof tasks completed by both nifr i: lengts ofb the

the model and the human as a function of the number of Fig. 9 depict opportunityam'ftho

V t d L is a screen o window . Thetask lines shows the so-called inverted-U shape hypoth- y ma t nxt wfactor T correlates"9
esized to exist under conditions of high workload. The indae degraaion: time vanue of a
experimental data, hoiever, indicates a leveling off ty unit time (ina.lsb-in the number of tasks completed by the human; achieved oAV seconds) " ''-"

b y a d j u s t i n g h i s b e h a v i o t t o a c c o u n t f o r t h e i n c r e a s e r t a s h eo i n t s t h e F g 9 orith e c a s e.'.5'.'.-. '
in the number of task lines, (i~e. maintaining a sub-Vcetiyonhevliy
jective level of performance). (uniform distribution)"... - . ..

Also indicated in Fig. 8 is that the human is out- Fig. 9 depicts a map of theoretical curves ofin leadsperforming the model in terms of the probahility of equal p for different combinations of oL and S. Thecommitting an error by the model is 1,icieabllul as a hypothesis that the average factor O'TO/A correlates... --
function of the numrber of lines monitored, whereas the with workload and affects degradation of performance is
human maintains a relatively constant low error level. verified by model simulation as well as by experimental " ---This fact can explain the constant human performaance results also shown in Fig. 9 for the case n-5, ýot-/2 ••'' •
phenomenon exhibited earlier. in the sense that the (nominal). It can be seen that an increase in r. leads -.-... ,
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a decrease in performance. In conclusion the experimental results allow us to
assus t th the p factor can represent an appropriate
aprior% measure of task difficulty in the current dyna-

:I I , ___ -0 mic envihýonment.

1. V\ BJECTIVE WORKLOAD AND EFFECTIVENESS

____________"__ p..? In an e •ort to compare the level of workload
9" .3 imp upon -.Ne human with that perceived by the human,

.- 4 rankings of sub..jective workload were calibrated with/ / subPect's rank odering of workload along the three
. dimensions of Tim Load, Mental Effort Load and Stress

./ j- Load. The methodo:.ogy used was the Subjective Workload
(a) Assessment Technique (SWAT) well documented in [6). The

experimental setting used was the paradigm presented in
P. 1 part I and the method of controlling imposed workload
.4 .4 4- .was by increasing the number of task channels from 2 to

2 10, all other parameters (velocities, task values and
processing time ranges) remaining fixed. As expected, -

as t model the average workload perceived by the subjects increased
+ +linearly with the number of task lines to be monitored
+ "data (Fig. 11).

' i ± m _ _ _L . -.. .

(b) I 60 lu-

•I.2 .3 ) 40" '-"- "

Fig. 9 (a) p curves, (b) performance vs. 0 p

A sensitivity study was performed on the model and a
Iso experimentally to check the assumption that for ,r o" csaew$
.onstant p the performance of the decisionmaker reaains otilt4|tlelilll t ~tHilttIrit4'(Woosed'.rk load)
:onstant, although the range of dynamics parameters 2 3 4 s 6 7 8 9 10
ýuch as velocity and dot time value varied in a wide
range. Fig. 10 confirms this hypothesis: the experimen- Fig. 11 PERCEIVED AID IMPOSED WORKLOAD
:al data shows that the human develops a strategy to.
saintain his performance relatively constant when the Corresponding to this increase in perceived work- .
iverage a priori workload (p factor) is kept constant, load, a change in human strategy under high workload
4ote that when the value of the dots is < .25 sec. the conditions was noticed in conjunction with the perfor-
serformance degrades, probably due to the fact that we mance level attained (recall Fig. 8). This change of
ire very close to human time delay limitations. The strategy is depicted in Fig. 12, where an effectiveness . .
model, however, does not achieve a constant performance factor E given by
Level, but rather exhibits a degradation in performance.
rhis degradation yields an increase in the average error [ [average value of tasks presented
probability imlike the relatively small and constant a g u ss e - x
average error probability observed in the experimental is plotted as a function of subjective workload for the
data. Performance for constant p same experiment. Essentlally this effectiveness factor

(vary(ag Jointly dot value and velocity raege) indicates that the human adapts a more discriminating
strategy (acting on tasks of average task value higher . . - -

S+ model than the average of those presented to him) when he is
, •confronted with increasing information processing de-

-. naands. This discriminating behavior accounts for the
a a 8 * bility of the human to outperform the DOM as discussed

.arlier in adapting a etrottgy for high workload condi-
4 . +ions. Fig. 12 shows clearly the 'Jump' of operative

0. + +ehavior in terms of average effectiveness between low
4. • and high workload conditions.

2 . Fig. 10a g. 12 Effectiveness Factor vs. Subjective Workload

tim• ,alu of I •t*i-+t+t f"I-*IH I i~i*|4iffffli # IIi~ i H J114'+J 4ti'+ i'+#*" dotv(sec0)f low high
.2S .50 .7S 1.0 1.2S .5 1 .1.5 2.0 2,25 2.5
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* .+

S+ + 6T

+ Fig. lOb - .
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VI SUMMARY AND CONCLUSIONS 3. Fattipati, K.R., "Dynamic Decision Making in Multi •
Task Environments. Theory and Experimental Results",'

In this joiut eiperimental-analytical study, per- Ph.D. Thesis, Tht University of Connecticut, 1980. "
formance obtained by the Dynamic Decision ý.'del (DDM) 4. Moray, N. ed. Mental Workload: Its Theory and
and human subjects in the experimental paradigm of Fig. Measurement, New York, Plenum Press, 1979.
3 was examined as a function of four task attributes 5. Soulsby, E.P.; Serfaty, D.; and Kleinman, D.L. "A
which included different task velocities, different Sensitivity Study of the Dyaamic Decision Model",
task values, different task processing times, and University of Connecticut Technical Report, Dept. 6
varying the number of task lines to be monitored. Re- of EECS, TR-83-12, July 1983.
suits of the study showed a general agreement with 6. Reid, GB.; Shingledecker, C.A.; and Eggemeier,
existing hypotheses regarding human performance as a F.T. "Application of Conjoint Measurement to Work-
functicn of the four attributes mentioned. The primary load Scale Development". In Proc. of 1981 Human
factor affecting performance was that of task velocity Factors Society Annual Meeting, Oct. 1981 (a),
a. indicated in the time available/time required trade- pp.. 522-526.
off of traditional operator workload research. In addi- 7. Suulsby, Z.T. "'iiumaii Operatur Workload: A Survey
tion, it was noted that the human operator was able to of Concepts and Assessment Techniques", University 0
successfully discriminate various undesirable tasks of Connecticut Technical Report, Dept. of EECS,
from desirabla ones as a means to keeping performance TR-82-4, Nov. 1982.
consistent. This may be due to a somewhat conservative
threshold - strategy employed by the decisionmakeo, but
in general it is felt to be consistent with one's
intuition.

The results of the model simulation study also
indicate that a decrease in performance can be obtained .
not only from increased information processing demands,
but also from situations in which action selection
uncertainty (i.e. conflicts) exist. This was most
clearly represented in the study involving the increased
number of tark lines to be monitored simultaneously. In
that study it has been shown that beyond a certain
number (47) of task lines (channels), the operator per-
formance decreases sharply due to the increasing con- 0
flict in action selection and limited information pro-
cessing capability.

However, in the experiments, the subjects showed
different performance in the high workload condition.
Instead of decreasing, the subject's performance was
maintained at a quasi-constant level due to adaptation
In operative behavior in order to (1) process less in- -
formation, (2) commit fewer errors, and (3) maintain a
subjective level of performance across high workload
euvironments. In diagram from the mechanism by which
decisions are mrde by the human appears to be that of
the following:

flreeived •-'-" - -"- "

nWOMATZ0 + lKKS~- ~fO"4.1
5, rdtegy.•

Fig. 13 J•ato-y of a decision

Another contribution of the present effort is the •
proposition of an objective measure of a priori task
difficulty in terms of the factor P. This measure
(0 - tR/1A) has been found to be adequate in-the
existing experimental paradigm, although more research
will have to be done to improve the measure in different-
dynamic environments. Subjective workload was found to
correlate very well with objective wo.kload imposed by
an experiment and an interesting find was that humans
tend to be more efficient in reasonably high workload
conditions.
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INDIVIDUAL DIFFERENCES IN MILITARY DECISIONMAKING:
THE CLASSIFICATION PERFORMANCE OF ACTIVE SONAR OPERATORS

Joseph C. Wohl

ALPHATECH, Inc.
2 Burlington Executive Center

1II Middlesex Turnpike
Burlington, Massachusetts 01803 z

Introduction This classification decision is only one of sev-
eral activities which the sonar operator must perform.

- The purpose of this paper is to demonstrate the These activities include control of the sonar search
indamental importance of individual differences among process itself, monitoring of the display and detection
ilitary personnel in their information-seeking and of possible signals against the noise background,
rocessing behavior when faced with critical decisions tracking of these signals over a period of time to
i a realistic task. The data reported ir this paper determine their correlation and consistency, and ulti-
are collected at sea in the mid 1960s. The analysis mately classification itself.
f this data base has provided an object lesson showing
he importance of emnirical data to decisionmaking The fundamental classification decision must an-
esearch. swer the question, "is this contact sufficiently like a

--h ---------- submarine to be classified as a submarine?" There are
Determinants of Decisionmaking Behavior five basic subiquestions involved: 1) Is the contact

truly moving? 2) What kind of reflective structure
In general, the major determinants of decision- does it have? 3) How large Is it? 4) What is its ,._•..-i

eking behavior include such factors as information shape or aspect? 5) Does it have depth below the ocean
resentation rate, perceived problem complexity, per- surface? In addition, strong correlations among the
eived time available for decisionmaking, the number answers to these five subquestions lend further cre-
nd quality of perceived alternatives, and the per- dence to one or another of the possible hypotheses.
eived risks (Sage II], Sage and White 121, Pattipati,
t. al [31, and Wohl [51.* In this paper, however, we The Experiments
hall examine two other factors for which empirical
eta are not often available. These are: 1) individ- A U.S. Navy destroyer spent a number o' weeks at
ul differences In cognitive and decision styles; and sea during the mid-1960's collecting a representative
) level of expertise attained, sampling of submarine and nonsubmarine contact infor-

The pertioal Poblm i Actveiona on a moenactive scanning sonar. Some sixty
.The Operational Problem in Active Sonar hours of contacts were recorded of which approximately

Classification 60% were submarine contacts and 40% nonsub contacts. . ,
The data were captured directly off of the sonar pre-

A modern active sonar, such as the SQS-23 or SQS- amplitiers onto 54 reels of 56-channel tapes. The sub-
!6, emits an extremely strong pulse of low frequency marine contacts were made using friendly submarines * *

;ound into the water on a nearly omni-directional ba- under strict control in order to obtain information at
tis. The outgoing sound pulse is diminished in inten- various ranges, depths, speeds of both submarine and
;ity by both the inverse square law and the absorption own ship, and submarine aspect angles, as well as under ;.
if sound in water. It is reflected by surface wave a variety and range of environmental and sea condi-
.ronts, bathypelagic fish, sea bottom anomalies, tions. The nonsubmarine contacts included identified
achools of shrimp, whales, and floating debris as well fish, porpoises, whales, bottom wrecks, and one float- "

-- &--real submarines, and is returned to the receiving Ing log. The information was collated by a group at " ' - iy
tquipment after having suffered another set of identi- the Applied Research Laboratory of the University of
:&l losses on the return trip. In the receiver, this Texas.
iignal information is mixed with noise from several
lources including own ship and other ships as well as From this collated information a realistic, 100-
2cean sources. item test was constructed consisting of fifty subs and

50 nonsub contacts and as much as 25 to 40 "pings" per %
The resulting mixture of signals and noise may be contact, all taken under a representative range of sea

presented to the sonar operator in several display for- conditions including sea state, wind velocity, wind di-
eats: a PPI display, a tactical range or time history rection, layer depth, bottom type, and bottom depth.
recorder, and a pair of audio headphones. The sonar The test tapes were then presented under highly con-
operator must examine the return information from each trolled conditions on real sonar equipment to 37
pulse or "ping", and as more and more information is Pacific Fleet sonar operators. These subjects repre-
accumulated on the sonar contact, he is required to sented a wide range of experience, measured in terms of
make and report a decision as to whether the received years of Naval service, number of sonar teaching jobs,
information represents 1) a non-submarine contact, 2) a number of sonar schools attended, number of ship
possible submarine contact, or 3) a probable submarine assignments, total years of sonar experience and years ''"
contact. This decision is made in conjunction with his of experience with the sonar used in this experiment.
watch supervisor and/or the antisubmarine warfare
officer on board the ship. In addition to the regular sonar equipment with

its displays and controls, the subjects were given ten
push buttons labeled 0 through 4 and 6 through 10 and

*References are indicated by number in square brackets instructed to Vress number 10 if absolutely certain of
and appear at the end of this paper, of a submarine, number 0 if absolutely certain of a

.. ............ ..............



nonsubmarine, and numbers I through 9 as appropriate 15 j - j "". "
on each pig. Omitting the number 5 from the group of..
push butLo.1 essentially produced a scaled forced
choice situation. Note that pushing a button is es-
sentially the same as a subject reporting his posterior 0" "

probability that his response resulted from the I/
presence of a submarine. Thus, this method is a mech- -N
anization oi Green and Swets' [5] subjective confidence . I
rating method for deriving Receiver Operating Charact- W '-

eristic (ROC) curves. It efrectively compresses multi-
ple unknown dimensions (i.e., the various sonar cues t •-f• -

and the weights given to them by the subjects) into a
single subjective dimension. Both the experiment and - - , -
the results are described in Wohl et al [61 and Nacht I
and Wohl 1 71]. 0,

Experimental Results

Using this method, ROIC curves were developed for ~fK J
each of the 37 sonar operators, It was quickly ap- %
parent that the operators fell into two groups which * .O2 40o o6 00 00 Io"

could be labeled "average" and "expert". The single PsI

exception to this categorization was the one subject CUAVEONPING N..

who exhibited a negative ROC curve. Figure 1 shows the -0S

combined results for the "average" group of 33 oper-
store. Note that the performance is little better than X-.-----20

random, and that accumulation of additional information
had no effect on performance for this group. Figure 2. Average R0C Curves of Highe3t Performance

or "Expert" Group

P(s/S) - probability that sonar operator says "sub"

when contact is a s'ib ("hit" probability) •

" P(s/NS) probability that sonar operator says "sub"
O• •. "lwhen contact Is a non-sub ("false alarm"•

probability)

- ___ _ -- through 10 was taken as a sub response. The perform-
.[•.'ance results were then plotted in terms of "hit" versus

- • -- "false alarm" scures. These two dependent variable• •/•/• I ~scores were then subjected to multiple correlation,-'-

analysis with the six independent variables of training• •• •/ e~~~nd experience mentioned previously. Unfortunately, ":'":-'

training and experience data for seven of the 37 sub-
jects were not available. For the remaining 30, the

- - - -. - analysis results showed an absence of significant
correlat.on between performance and experience.

I I Ii The data for the 30 remaining subjects were then ..-

divided into two groups labeled "unbiased" and
M0 00 a 0o 0 0.10 100 "biased". The criterion for categorization is evident

tuIvt in the differences between figures 3 and 4. Figure 3

O 3 shows the aggregated classification performance for a
- --- - 0 typical "unbiased" sonar operator. The point labeled

n ------- 20 number 1 in figure 3 represents the average performance
for the first "ping" across all 100 test items for that
subject, point number 2 for the second "ping", and so

Figure 1. Average ROC Curves of "Avarage" Group forth. Of the 30 subjects for whom experience data
were available, 10 showed "utl iased" characteristics

P(s/S) - probability that sonar operator says "sub" similar to figure 3 while 2U showed "biased" character-
when contact is a sub ("hit" probability) istics similar to figure 4. The term "biased" is used """" "

here to indicate the fact that operators exhibiting
P(s/NS) - probability that sonar operator says "sub" this characteristic almost always reported "nonsub" on

when contact is a non-sub ("false alarm" the first "ping"; i.e., they would almost always tend
probability) to push buttons 0 through 4 on the first "ping". In

addition, they exhibited a delay of between 5 and 15
By way of contrast, the average curves of the "pings" before their bias disappeared; i.e., they

highest performance or "expert" group of 3 operators is seemed to require an accumulation of between 5 and 15
shown in figure 2. Here it is clear that these oper- "pings" worth of sonar information to overcome their
stars were able to make use of the additional infor- bias.
mation in improving their discrimination capability.

At first this was believed to be the normal result
In order to determine the effect of individual of more extensive experience at sea on the part of the

differences on classification performance, the data for "biased" operators. Since most at-sea sonar contacts
each subject were aggregated in the following way. with active sonars are indeed found to be nonsubs, one
Pressing any of the buttons 0 through 4 was takLn as a would expect the development of such a base rate bias
nonsub response, while pressing any of the buttons 6 over a period of long service.

.o- " . ; ... .
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(SUBJECT NO. 20) 7
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,0 .

t 0
60 U.

n.C.NT .4.

so ~0.4
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40 0.4

20 j0.2(FILLED SYMSOLS STATISTICALLY

LEVEL O BETTER. BASED ON F-TEST4

0 20 40 60 80 100 0 1 2 5 10 is LAST

,WAENT NDN-SUBS INCORRECT PIN IER-

0 0 UNBIASEO FALSE ALA•S "0ORTS0.1
Figure 3. Classification Performance Curve of 0 UWHASEO HITS "UNBIASED 10 OIPEATORS (O 6 10)"

Typical "Unbiased" Sonar Operator X BIASED HITS ' o' . -

BIASED FALSE ALARMS NIIASEO PERATORS (OF - 6 20)

t(ootEC? 80. 25) Figure 5. Correlation of Experience with Classifica-
100 - -

A tion Performance for "Biased" and "Un.biased"
Sonar Operators

Discussion and Conclusions .

PING. M. From the foregoing data analysis, several conclu-
60 -$ions can be reached. First, "bias" is not correlated

PECN with experience; rather it appears to be inherent in
SUBS G) the subject. Secondly, the presence of bias results in

40 minites of lost time in an operational setting; it
should be noted that 5 to 15 "ping." represents an ad-
ditional 3000 to 9000 yards headway made by an attack-
ing submarine before action i4 taken. Thirdly, even

0 - - - - - - - - though "biased" operators are evidently trying to re-
duce their false alarm rate (see figure 4), the cor-

0 relation results shown in figure 5 indicate that biased
operators weae just as biased about hits as about false

- -alarms. 4
0 zo 40 60 s8 1o -.

PERCENT 4DR*SU-S INCORRECT It is clear that a deeper understanding of this
type of judgment bias aod its operational impact is
critical to a number of naval activities including per-

Figure 4. Classification Performance Curve of sonnel selection and assignment, command and control
Typical "Biased" Sonar Operator system design, and decision support system design.

Since passive sonar is the primary ocean surveillance
-his hypothesis was then tested by subdividing the in current uoe today, the study results reported he-in

group of 30 sonar operators into"biased" and "onbianed" are primarily of historical interest. But they demon-
subgroups and again running the multiple correlation strate the critical role that empirical data can and
analysis with the six experience factors as before, must play in understanding human-machine interaccion
The results of this analysis are shown in figure 5. and in designing for it. Such data are needed for
Here, the multiple correlation coefficient is plotted today's critical Navy decisionmaking tasks such as
against the accumulation of Information in terms of those of the specialized Warfare Commanders, the Com-
number of "pings" ots each contact. From figure 5, it bined Warfare Commander, the Tactical Action Officer,
is clear that the "unbiased" subjects (represented by and those who select and/or modify firing doctrine and
the upper curve scores) showed high and significant rules of engagement. Such data will help us not only
correlation with experience, regardless of information to better understand these decisionmaking functions.
accumulation, as might be expected of "normal" people. but will also provide an improved basis for 1) building
On the other hand, the 20 "biased" subjects showed s and validating decision models, .2) designing better
low correlation with experience until at least 5 to k5 systema, and 3) making improved huuan and syste~m em-
"pings" of Information had been accumulated. ployment decisions.

S5 '""""•'
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THE COGNITIVE ORGANIZATION OF SUBMARINE SONAR INFORMATION:
A MULTIDIMENSIONAL SCALING ANALYSIS

Kevin Laxar. George Moeller. and William H. Rogers 4

Behavioral Sciences Department
Naval Submarine Medical Research Laboratory

Box 900 SUBASE NLON, Groton, CT 06349

Summary -- Nonmetric multidimensional scaling dimensional scaling techniques [31-[61 in the context
(MDS) techniques were employed to determine how sonar of Naval Air antisubmarine warfare (ASW) in prioriti-
information is organized and assigned priorities by the zing decision-making situations. Such techniques have
Submarine Conning Officer (CONN). Data were collected been applied in the present study to judgments about
from 95 Submarine Officers with varying amounts of at- sonar information, to determine how such information
sea experience. All types of information proposed for is organized and assigned priorities by the submarine
display in modern sonar systems were classified by the Conning Officer.
investigators into 15 categories. Descriptions of the
categories comprised the stimuli for the two tasks the Method
subjects performed. In an unconstrained sorting task
subjects sorted the 15 stimuli into groups according to Subjects
similarity of the sonar information described, to
provide data for the bIDS analysis. In a ranking task, Data were collected from 95 Naval Officers in th.
subjects rank ordered the stimuli according to New London area. In order of decreasing seniority and
importance at CONN. The biDS analysis provided evidence experience, the sample consisted of 11 Commanding
that the officers organize sonar information in two Officers, 16 Executive Officers, and 30 junior men
-dimensions, related to Information Source and Informa- qualified as Officers of the Deck, from eight fast
tion Destirition, while the rank order data indicated attack (SSN) and eight fleet ballistic missile (FBM)
that most importance was attached to the information submarines. In addition, 38 junior officers, who had
at the extremes of these dimensions. SignificanL tecently completed the Submarine Officer's Basic Course
agreement was found among all subjects, regardless of at the Naval Submarine School, parLicipated. This last
experience level, in the way the sonar inforiation was group, in general, had no at-sea experience.
p .hologically organized and prioritized.

Stimuli
Recent technological developments have made the

human-machine interface increasingly complex in terms of The various types of information available from
the kind and amount of information available and how it current and proposed sonar systems were classified by
is displayed. The Naval Submarine Medical Research the investigators into 15 categories, as listed in "".
Laboratory has addressed some of the resultant problems Table I. Descriptions of these categories comprised
in the design and operation of automated information the 15 stimuli for the tasks to be performed. Discus-
systems. in particulai, submarine sonar systems. One sions with sonar instructors indicated that the
phase of this project has been to identify those pieces selected categories were exhaustive of the types of
of sonar information that are perceived by the Conning sonar information that could be presented at CONN.
Officer (at the "CONN"), who is immediately in charge Each of the stii.uli was typed onto a separate card,
of ship operations, to be most useful in ship control, numbered on the reverse side, to create the stimulus
Current hardware makes ft possible to display any or deck. A questionnaire administered after the data
all sonar information at the CONN, from raw auditory collection confirmed that the categories were meaning-
data to refined visual displays of predicted ships' ful and that no important piece of information had been
positions. Two important considerations, however, may omitted.
dictate that less information be provided than is
technologically possible. One of these is financial, Procedure
in terms of hardware and software costs. The other,
which this resparch addresses, is the limitation by To provide data for the multidimensional scaling
human information processing capacities, since many analysis, subjects were first asked to perform an
information processing theorists consider too much unconstrained sorting task, arranging the stimuli into
information a source of performance degradation (e.g., as many or as few groups as they felt necessary,
(11i). according to similarity. The definition of similarity

was left up to the subject. Cards which described
There exist a number of different approaches to similar categories were to be placed in the same group,

* Identifying and prioritizing the sonar information that and any card which described a unique category was to
should be displayid at CONN, but each has its associ- be placed by itself. Then, to provide additional data
ated problems. It has been our experience, for for interpreting the scaling analyses, subjects were
example, that judgments by systems engineers frequently asked to rank order the stimuli according to importance
are not well received by the operational forces, and at the CONN for two different operational missions. The
that simple polls Of experienced submarine officers first mission assumed an SSN on an ASW direct support -.

often yield equivocal results. More meaningful patrol. In such a scenario, own ship would seek out
information, on the other hand, could be obtained by and follow enemy submarines. The second mission

* empirical assessment of alternatives during real or assumed an FBM patrol in an area where a high density
* simulated operations, but such an approach can be of sonar contacts was expected. In this scenario, own

expensive and time-consuming. In lieu of these ship would remain in a designated area and try to avoid
approaches. Zachary [21 has employed nonmetric multi- detection by enemy vessels. Subjects were instructed %:
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then to mark their rank-ordertd lists to show which The comp.ter analysis was repeated with 10 different
options were necessary, merely dtsirable, or unneces- starting configurations to ensure that the obtained
-ary. After each task, subjects recorded their data en solution was a result of the stress value reaching a
answer sheets according to the code number on the back global, rather than a local, minimum.
of each stimulus card.

The resulting two-dimensional solution is
Due to time constraints in obtaining data from presented in Figure 1, with the number of dimensions

these subjects, the sorting procedure was used in lieu selected according to the suggestions given by Shepard 6
of the pairwise judgment of similarity often employed [8]. These included consideration of data values in
in this type of analysis. Data tiere usually collected the dissimilarities matrix, stress values for other
from small groups of subjects, such as one ship's crew, dimensionalities, and meaningfulness in the interpre-
in sessions lasting approxiactely one hour. tation of the axes.

Results and Discussion The labeling of the dimensions in a multidimen-
sional scaling configuration is, for the most part,

The data from all subjects for the 'inconstrained based on the information available to the investigators 6
sorting task were entered into a computer program which about the set of stimuli being scaled. Examination of
produced a .issimilarities aatrix for the 15 stimuli, Figure I leads us to believe that, at least for the
assigning values to the 105 pairs of stimuli according sorting data we obtained, the officers organize sonar
to the number of times subjects placed them in the same information in terms of no more than two basic
group. This initial procedure thus produced a proxim- dimensions: data concerning sources of information, as
ities matrix from the nominal scale sorting data. The shown along the vertical axis, and data related to the
resultant matrix, in turn, was the input to the KYST-2A destination of that information, as given along the
multidimensional scaling program [7]. Through this horizontal axis. The two extremes of the Information
technique as employed here, a configuration of points Source dimension are delimited by information from the
(stimuli) in Euclidean space is constructed by an world external to the submarine. At one end are
iterative adji stment process, based on the observed auditory and visual displays of the relatively
dissimilarity between all pairs of stimuli. The final unprocessed sonar signals arriving at the ship's hyrdo-
configuration is theai rotated so that the principal phone arrays, obtained in passive mode from noire
components of the points lie along the coordinate axes. generated by the sotnar contact. Also here lies infor-
The object of this procedure is to help determine the mation about the contact derived from any active sonar -

underlying psychological struct,"re of the stimulua transmission the contact makes. At the other end of
domain, namely the various pieces of sonar information, the scale is information about the environment which

bears on sonar performance, such as.sea state, ocean
depth, and computed parameters for the acoustic

TABLE I properties of the surrounding ocean area. Information
about, and derived by, own ship lies between the out-

The categories of sonar information that comprised side world extreme. Hence, this ax!s can be labeled

the stimuli. The numbers indicate the aggregate rank as Contact versus Environment.
ordering by importance, and the partitions indicate
the degree of necessity, for all subjects. The Information Destination axis is concerned with

where in own ship, the submariner's inside world, the
available information is directed. The axis is

Rank Kf"J of Izrformation Necessity delimited at one end by factors relevant to the CONN,
- which influence the manuuvering of own ship: a table

listing all contacts and their Classificatior, such as
1. Contact Summary - Geographic friendly or hostile, surface or submerged; a geographic

picture showing the positions of contacts in relation
2. Contact Summary - Tabular to own ship; and displays showing predicted future

positions of contacts and the effects of trial
3. Single Contact Data NECESSARY maneuvers. At the other end of the dimension is

information relevant to the sonar personnel: the
4. Tactical Aids e. . status of own ship's sonar equipment (performance

monitoring/fault location) and the currert utilization
5. Own Ship Data of the various pieces of active and passive sonar

equipment. This axis can therefore be labeled in

6. Contact's Active Sonar terms of Sonar versus CONN.

The data of all four groups of subjects were " ""
7. Raw Visual Displays aggregated for each ranking task according to .npor-

tance, and the Kendall coefficients of concordance W8. Ocean Acoustic Parameters (9) were computed to assess between-judge agreement-
DESIRABLE For both rankings, agreement was highly significant, as

9. Ranging Data indicated by the chi-square test. For the situation in

which the submarine was acting in an ASW support role,
10. Classification Aids a coefficient of W - .46 was obtained, X

2
(14. N - 94) -

609.9, r< .001. 'For the FBM patrol situation, a co-
11. Environmental Parameters efficient of W = .44 was obtained, X

2
(14, N - 94) .

577.9, , <.OOC.

12. Passive Sonar Setup The rank order of importance for the 15 items of

sonar information was determined from the sum of their 4
13. Raw Auditory Signals ranks from all subjects. This ranking for the FBM 7
14. Active Sonar Setup patrol situation is given in Table I, with the parti-

tions according to necessity indicated. The ranking

15. Sonar Hardware Status for the ASW support role situation was identical except
for a transposition of items ranked 13th and 14th, and ..
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when both rankings were combined. the ranking was as It may be noted. however, that the rnnkinv by
shown in the table. The ordering and categorization of importance follows, in bome approximate manner, the
these stimuli according to their importance at CONN arrangement of the stimuli as one proceeds along the
appears quite reasonable. Those items deemed necessary Information Destination dimension from CONN to Sonar.
are exactly those important to maneuvering own ship: To determine if this unidiciensional ranking formed the
the location of sonar contacts in relation to own ship. underlying basis for the configuracion given by the
the classification of each contact, and the motion of XYST-2A scaling, the program was run again ising the
own ship. Those items tanked moderate in imnportance .ank order 'as the starting configuration for a one-
were described as desirable, or nice to have, but not dimensional solution. As with other hypothesized uni-
absolutely necessary. These items appear to be ones dimensional starting configurations run previously, the
-which are less iselful, in themselves, to CONN~ in stress value for the one-dimensional solution was not
operating own ship, but which may help evaluate the impruvt~d beyond the value originally obtained. This
quality of information cat.~gorized as Necessary. In result further indicates that ,dhile a meaningful uni-
that regard, it is quite unexperted to find the visual dimensional ordering can be imposed on these stimuli,
displiys of relatively unprocessed sonar signals to be the underlying organization is yet two-dimensional. In
ranked as high as seventh. This may indicate a addition, however, Infqrmation Destination is very 0
tendency of CONN to "look over the shoulder" of those likely the more salient of the two dimensions.
in Sonar, perhaps just to make sure Sonar is not

Missing any contacts. Finally, those items lzbeled as To determine if the four groups nf officers had
Unnecessary are those concerned with the operation of organized or ranked the sonar information differently.
the sonar system, generally under the complete purview complete separate anal' aes as dexcrihe~d above for all
of the Sonar Supervisor, subjects were computed on the data from each group. In

all cases, rejilts indicate that a two-dimensional
The numbers in Figure I show this rank order solution was most appropriate. The KYST-ZA scaling

written beside the labeled points on the two-dimen- configurations were very similar for all groups, with
sional scaling configuration. Those four items ranked the stimulus points in slightly different positions in
most important to. and directly concerned with, the their respective quadrants from one group to another.
function of CONN., are located together at the arprG- The one exception v'as that the Executive Officers
priate end of the Infor.nation Destination dimesion. placed Own Ship Data closer to the Contact rather than
These are followed by data about own Ship and Contact's the Environment end of the Information Source dimensi~on.
Active Sonar, both slightly removed from the COFN
extremum and relatively distant from each other, in the As Indicated by the signifirant coefficient of 0
directions of the ends of the Information Source dimen- concordance given above for all subjects, rankings
sion. The next two items in importance are very close between groups were also rather similar, characterized
to the extremes of the Information Source dimensiorn. for the most part by transpositions of adjacent stimuli
the Raw Visual Displays at the Contact end, and Ocean from one group to another. The notable exceptions were
Acoustic Parameters at the Environment end. Those items that the Commanding Officers ranked the Raw Visual
ranked least Important relate to the sonar equipment and Displays second, in the Necessary category, and the
are placed at the appropriate end of the Information recent graduates of Submarine School ranked that same
Destination dimension, information in the 12th position, in the Unnecessary

category. Commanding Officers were perhaps reflecting :.

the desire to monitor the raw data in order to confirm

INFORMATION DESTINATION
SIN A~t ~CONN

2 ENVIRONMENTAL PARAMETERSI

IOCEAN ACOUSTIC PARAMETERS DT

WE OWNSHPDT

0 66

0COTACTISUMMARDS

Z CONTACT SUMMARY
S SONA SOARIN SDUASNLECTTCADT

S HARDWARESIGECNATD A

WS CLASSIFICATION AIDS

Z ~CONTACT'S ACTIVE SONAR

4 ~RAW VISUAL DISPLA Pq

0 ~~RAW AUDITORY SiGNL

Figure 1. The two-dimensional solution for the ICYST-2A
scaling analysis, for all subjects. The numbers indicate the
ranking by Importance for the 15 categories of sonar information.
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the accuracy of inferences represented by the that information directly concerned with the sonar
categories, or to be closely involved with all phases of hardware. For system design, these results suggest
the ship's operaticn. The least experienced group, on that data about the sonar system are least desired at
the other hard, may have been expressing recently CON14 and hence could be omitted from the CONN's display
acquired training .doctrine. Between-judge agreeme.it for if financial or information processing limitations
all groups was highly significant, with coefficients of dictate that ail information should not be made avail-
concordance of W - .42 to .59 obtained. Within groups, able. If fucther restriction of kinds of data to be 5
as well, little difference was seen in rankings for the displayed at CONN were necessary, investigation of
two different tactical missions, those types of information in closest proximity to each

other in the multidimensional scaling solution, indica-
When the rankings were compared between officers ting highly similar data, would be appropriate. to

assigned to FBM subtn.rin.s and those assigned to SSN determine if there are any completely redundant displays.
ships, again, littiv diff~rence was evident in the way An hierarchical clustering analysis is underway to
the two groups ranked the stimuli for the two opera- assess this redundancy.
tional missions, and the rankings followed the same
general pattern as presented in Table I. In addition Acknowledgments
to minor reversals in rankings between the two groups
of officers, however, the FBM officers consistently The authors wish to express their gracitude to Dr.
ranked Own Ship Data as more important, third over all, Thomas Santoro for his computer assistance, and to Dr.
than did the SSN officers, who ranked it seventh. This Phipps Arabie for his most helpful consultations on
difference may reflect greater general concern on the various aspects of the multidimensional scaling
part ot the FBM officers with their ship being "on analyses.
station," consistent with the mission of an FBM patrol.
Similarly, SSN officers ranked Single Contact Data and This research was performed under the Naval
Contact's Active Sonar two positions mor,: important Medical Research and Development Command Research Work
than the FBM officers did, possibly reflecting consis- Unit MOIOO-PN-O01-1015. The opinions and assertions
tency with the SSN's mission. It should be noted that contained herein are those of the authors and should
the differences between these groups are minimized by not be construed as official or necessarily teflecting
the fact that the officers could have had a varied those of the Department of the Navy or the Naval Sub-
range of experience on a submarine other than the type marine Medical Research Laboratory.
to which they were currently assigned. 0

References
The rankings for the groups of FBM and SSN sub-

marine officers were combined with each other and [1] I. L. Janis and L. Mann, Decision m.king. New -
across the two types of missions, as well. When con- York: Free Press, 1977, p. 16.
pared with the ranking from the Submarine School
graduates, the latter attached more importance to the [2] W. W. Zachary, Application of multidimensional
Ocean Acoustic ard Environmental Parameters and less scaling to decision situation prioritization and
importance to Own Ship Data and, as noted above, Raw decision aid design. Technical Report 1366-B.
Visual Displays. It is suggested that these differ- Willow Grove, PA: Analytics, 1980.
ences may reflect experience gained at sea versus the
aspects of ship operations emphasized in the Submarine [3] J. B. Kruskal, "Multidimension.il scaling by op-
Officer's Basic Course. timizing goodness of tit to a nonmetric hynothe-

sis," Psychometrika, vol. 29, pp. 1-27, 1964.

Summary and Conclusions
[4] J. B. Kruskal, "Nonmetric multidimensional scaling:

This study represents a successful application of A numerical method." Psychometrika, vol. 29, pp.
the multidimensional scaling model, providing a repre- 115-129, 1964.
sentation of the way in which various pieces of sonar
information are organized in the mind of the submarine [5] R. N. Shepavd, "Analysts of proximities: Multi-
Conning Officer. Results indicate that there is sub- dimensional scaling with an unknown distance
stantial agreement among officers of various levels of function. I.," Psychometrika, vol. 27, pp. 125-
experience regarding the way thekindsof sonar infor- 140, 1962.
mation are organized. There is also agreement among .-
these groups in the relative importance of these pieces [6] R. N. Shepard, "Analysis of proximities: Multi-
of information in two different operational scenarios, dimensional scaling with an unknown distance
both of which yielded similar rankings. function. II.." Psychometrika, vol. 27, pp. 219-

246, 1962.
At least for the data obtained from un.:onstrained

sorting by similarity, multidimensional scaling [7] J. B. Kruskal, F. W. Young, and J. B. Seery, How
analyses suggest that two dimensions, at most, are re- to use KYST-2, a very flexible program to do
quired to describe the Conning Officers' conceptuali- multidimensional scaling and unfolding. Murray
zation of the relations among various types of sonar Hill, NJ: Bell Telephone Laboratories, 1977. 9
information. One dimension is related to the source of
available sonar information, whereas the orthogonal, [8] R. N. Shepard, "Representation of structure in
and primary, dimension relates to where in own ship similarity data: Problems and prospects,"
that information is directed or handled. The former Psychometrika, vol. 39, pp. 373-421, 1974..
dimension is laid out avcording to information from the
sonar contact, from own 3hip, and from the ocean envir- (9] M. G. Kendall, Rank correlation methods. London: %
onment. The primary dimension involves sonar opera- Griffin, 1948, chap. 6.
tions at one end and Conning Officer's responsibilities
at the other.

When ranked according to importance, the informa-
tion that the officers appear to require most is that
from the extremes of the dimensional axes, except for ...

90

V.\ ° /



DECISION AND DISPLAY ANALYSIS IN A SIMPLE SURVEILLANCE PROBLEM

Frank L. Greitzer and Ramon L. Hershman

Navy Personnel Research and nevelopment Center

San Diego, CA 92152

S4 •Summary

"- Last year at this workshop we reported on human per- SIG*1AL NOISE
formance in a decision making task posed in terms of
arget surveillance. The target was either at a pre-

vious fix or had moved to a new location offset by a
known distance and random angle. The problem was to de- (a) DOTS
cide, based on a noisy sample of data, which of these 0*..0.
two states was true. To assess human information pro- S
cessing abilities we derived an optimal processor to
compare with human performance data. In this report we, , -

pursue the relationship between visual and auditory ..L
representations of the task and describe effects of (b) .
alternative representations on human performance. -

Problem Definition -

Oetails of the problem and its analysis were de-
scribed earlier [1]. Briefly, we assume that the target
is stationary when the data are observed and that its c ""position is either fixed at an arbitrarily defined ori- (c) a•yps '"•

gin or exactly R units removed in any direction. Let N -.

observations be presented as dots on a CRT display,
where each dot encodes the reported (x,y) coordinates. "
Let sensor error be produced by the circular normal
density. Then if the target hasn't moved, the dots will
tesd to cluster around the origin. If it has moved, the (d) WEDGES
dots tend to cluster around its new locus (Rcose, Rsine)
where R is the fixed offset distance and 0 is taken to
be a uniform variable on (0,21r).

Thus, the decision maker must decide between only

,two possible states of nature, SO and SR. In state S0. (e) zAGs.,Ž.

the target is at (0,0); in state SR it has moved R units -

away. Figure 1 (a) stows some typical stimuli in the .
original "DOTS" representation for samples of size 7
from SR (signal) and So (noise), respectively. -On each-- Figure 1. Visual displays used in the decision

trial the observer sees one such stimulus or the other making experiments. The five stimuli shown as
and must decide whether S0 or SR is true. Stimuli k-1 "signals" (and those as "noise") represent

identical samples of size 7. All of the stimuli 0in Figure are other visual representations of the encode the same information; viz., in polarcoordinates the encoding is (Fi-Te 1 ) represent-identiinate thea

Optimal Performance ing range and bearing from the origin.

Explanation of stimuli: (a) DOTS--original
Requiring the decision maker to minimize the expect- spatial representation of points in the plane.

ed cost of decisions, we derived the optimal Bayes pro- (b) SPIKES--spikes are drawn at bearings 6i
cedure and the optimum rule (see [(] for details), viz.: and with lengths proportional to r1 . Size of

Decide SR if and only if d ) d*, circle is arbitrary. (c) GLYPHS--same as SPIKES
except rays are used. (d) WEDGES--wedges extend

where jd is the observed distance from the origin to the from the origin to each sampled point.
center of mass (centroid) of the data; and the criterion (e) ZAGS--vectors ot length ri and orientation eI
d* contains a modified Bessel function of order zero and are successively appended.depends on the costs, priors, sample size N, error

variance c2, and R. The criterion S* is a decreasing

function of N/C2 and. for symmetric costs and priors, ,
approaches R/2 in the limit.

U..
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In the context of the theory of signal etectability We also tested other visual representations of the
[2] we regard the movem.nt of the target as a "signal" data. In thi3 regard, any information display consti-
to be detected and obtain the probabilities of detection tutes some level of decision aiding. At one extreme
and false alarm. These are, respectively, the probabi- would be a display of numbers for the x,y coordinates.
lities that the observe-l distance I exceeds 4*, given SR At the other extreme would be simply showing the optimal
and SO. Figure 2 shows theoretical Receiver Operating decision. Our displays in Figure I lie between these.
Characteristic (ROC) cu0ves for sample sizes N = 1 3, 5, We sought alternative representations that preserved the
7, = = dimensions of the original task. Thus, every displayple size, a decision ma1er who uses the distance statis- codes distance and anglc information for each observa-

tion--these dimensions remain unintegrated and tneir
tic d is constrained to the given curve, processing is left tc the observer. Mathematically, the

task is identical in every case. However, the cognitive .*.¶.- -.
Hum"'n Performance processing required seems quite different: Shapes of -.

stimuli k-e seem mn.re salient than distances to cen-
Spatial Representations troids.

We assigned equal priors and collected performance We collected performance data for the five displays
data for the DOTS task with sample sizes N = 1, 3, 5, 7, in Figure 1 and found little, if any, differences; the -

and 9; 02 = I. A microcomputer displayed, on each trial ROC curves appear in Figure 3. The failure to find
R 12 uits(2. cm an pltte dfferences, we believe, attests to the versatility ofthe circle of radius R = 1.2 units (2.2 cm) and plotted human information processing. We note, however, that

the sampled data as points in the plane. We used both
yes/no and rating-scale procedures (see [2), p. 32-43) observers had unlimited time, no stress, and no addi-

for data collection. Feedback--right or wrong--and the tional workload conditions--perhaps such manipulations.

correct location of the target were given after each would yield differences in performance.

play. Three observers were tested for approximately 500
plays at each sample size; the last 200 plays were Acoustic Representation
analyzed. Representative rating-scale ROC curves for
one observer are plotted as dashed lines in Figure 2. As we noted last year, the solution to our spatial .
We note that our observers only approximated the optimal task is identical to the solution of a well-known pru-
procedure, and although they improved as N increased, blem in acoustic and radar signal processing: detecting e -.- '

they failed to extract all the available information. in Gaussian noise a sinusoid signal known exactly except -

140

0. -5

Figure 2. Optimal (solid curves) and human (open circles) ROC curves for sample
sizes N - 1, 3, 5, 7, and 9; observed curves are each based on 200 trials.

92

,..•/ / •" .,::.:...



0 00
=.,1.9 -_.- O

--- • .- - .0

" / o .0000

/00
/ 0

/0 0

/0CIiL , .. L

7/1 0

N * S~-.-9 WIT1ICMJ W' IE IN .201
ZdO TRIALS a 0000 AUDIT*"

PtFA) tA

Figure 3. Olbserved ROC curves for the five Figure 4. Observed ROC curves for the auditory
information displays with N S; R -1.2, c2  1. detection experiment (open circles, after [3]);
Each curve is based on 200 trials with a rating- and the isomorphic visual task for N - 20 with
scale procedure. [CD -OS, S - PIKES, io phase information (filled circles).
G GLYPHS, W WEDGES, Z ZAGS]

for phase. Here the input is passed through a narrow- because the human auditory system is, we might say,
band filter tuned to the signal frequency; the amplitude phase-deaf: at least with regard to differentiating
of the resultant envelope is then submitted to a cri- simple pure tones differing only in phase. So, we next
tenon device to reach a decision. There is a strict considered withholding phase information in the visual
isomorphism between this acoustic problem and the spa- task.
tial task for our observers. The unknown phase of the
sinusoid is pHecisely the unknown angle 9 of the tar-
get's movernent in the spatial domain. The amplitude of Comparing Modalities
the envelope utput by the narrow-band filter is the W e thes k o ta the ser viewed " ".
distancec sLAtistic I in our task. We find no prior cons i fied the task s oth t the viewed
riferencpi :o this striking istmorphism in either the only distance information. An example of this visual
engineering or behavioral science literature. We were -
particularly interested in comparing human performanc stimulus with hobservations sample ved from the signal
with different sensory modalities on these mathematical- distribution (the stimulus on the left is the identical
1 y identical tasks, sample with a spatial display including phase informa-

tion). We used sample size N - 20 to roughly equate
A psychoac.ustic experiment reported in 1964 [3] our task parameters to those used In the acoustic

(see also (2) and [4]) met theconditions of our task.'
and essentially played the spatial problem through the
observer's ears. A sliding rating scale was used to
report tie observer's ccnfidence that the sine wave was
present and this afforded a precise plot of the ROC •
curve. One of the conditions in [3] hdd acoustic para-
meters Es/N 0  1 that are mathematically equivalent
to a sample size of 19.4 in our spatial task [5]. The
auditory ROC curve is shown in Figure 4 (open circles).
Note that the acoustic task was much easier (in theory) 0%
than any of our conditions. However, the auditory ROC
curve zpproximates the theoretical curve that we derived
for our task with N = 3; it also is close to our ob-
served data for N - 3. These cumparisons indicate a experiment. An observed ROC curve for a well-practiced
severe loss in sensitivity in the acoustic modality, observer with this visual no-phase condition is shown

as filled circles (dashed lines) in Figure 4. Note
that performance in the visual modality is stillIt is clear that humans perform far better in the superior, despite the removal of phase information. If

spatial equivalent of thin detection problem. We attr- the only shortcoming in the auditory task were an
bute this superiority in part to the human's limited insensitivity to phase, we should expect these empiri-
ability to process acoustic phase information [6]. Co- cal curies to coincide. There are still unaccounted
herence in phase, of course, speaks to the presence of for processing losses in the auditory domain.
the signal--and in the spatial domain the variation of
phase angle for the N observations is readily observed. Some additional insights into phase-deaf processing
However, this information is not accessible acoustically in this task are discjssed in the Appendix.
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Beyond'differences in phase-sensitivity, what other Notes and References
modality effects might be operating? As one of the
Conference attendees suggested, the unexplained auditory 1 Herchman,'R. 1., and Greitzer, F. 1. Detecting a.
deficit may be attributable to limitations in temporal chang in tre an : A compariso n an

integration in the auditory system. In the auditory and in targ ocatio ceedis of he 5th
task it is not possible to present all of the data simul- Man opti prkshop on C3 Systems, 1982, LIDS-R-1267,t
taneously as was done in the visual display. Limita- 1M-1N. o o C
tions of the auditory system in integrating information 133-13-.
over a temporal range may correspond in the visual do-

mainto he umbr ofdot tht te obervr cn Ite- 2. Gr-een, 0. Vs., and Swets, J. A. Signal detectionmain to the number of dots that the observer can inte- theory and psychophysirs. New York: Wiley. 1966. i::::::' \
grate with brief presentatir .s. Thus, sequential terad-c.--..wYo:Wl.96
display of the visual data should further reduce per-
formance; whether or not this manipulation can account 3. Watson, C. S., Rilling, M. E., and Bourbon, W. T.

Receiver-operating characteristics determined by afor the remaining modality differences is an open mechanical analog to the rating scale. Journal ofquestion that merits empirical investigation, the Acudstical Society of America, 1964, 36, 283-288.

Discussion 4. Jeffr~s, L. A. Stimulus-oriented approach to
dete,.. ion. Journal of the Acoustical Society of

In summary, we devised a simple but rich surveil- America, 1964, 36, 766-774.
lance task (that could easily be done by machine alone) ..
in order to study human cognitive abilities and limita- 5. Let ES - signal energy and N0 - noise power density.
tions. We found that, in the visual domain, humans
generally (although imperfectly) follow the prescription Then the equivalence is given by EA/NO = NR2 /2a 2 .
of the ideal observer; and that human cognitive pro- -0

cesses are quite versatile in adapting to variations in 6. This phase information is not to be confused with
visual display representations. We identified an iso- the unknown phase of the sinusoid signal.
morphic acoustic task and observed that humans are
markedly inferior in this modality--attributable in 7. We thank C. Rogers Saxon for helping with data
large part, we believe, to an inability to process coilection and fov providing important insigits
relevant phase information. and criticisms during the preparation of this

report.
As we have seen, auditory processing of the sur-

veillance problem appears to have inherent deficiencies
(phase-insensitivity) that may not be possible to over-
come in the acoustic domain. By presenting the infor- Appendix:
mation visually, substantial gains in performance are
achieved. Even a relatively degenerate visual represen- "Optimal" Phase-Deaf Performance
tation lacking phase information produces better per-
formance than observed in the auditory task (Figure 4).
rhe more complete visual representations in Fig, re I If indeed human observers are unable to process . -
provide a higher level of "aiding" that yields even phase information in the auditory task, then it is
better performance. Nevertheless, human performance Is appropriate to compare their performance with an
still not optimal. "optimal" processor who is similarly deprived. Such

an analysis would also provide the theoretically - .. -.
Toward understanding the causes of this sub- optimum performance to which we can compare the visual

optimality, we conducted some informal experiments that no-phase data shown in Figure 4. 4
revealed human biases in computing the centroids: Scme
individuals terd to give undue "weight" to outlyinq One obtains this theoretical processor in the same
points, while others tend to do the opposite. We have manner as in the original problem that we reported iii
not pursued the nature of such biases in the various [1); i.e., derive the likelihood ratio of the density
spatial displays in Figure 1. One expects that these functions given states SR and SO.
stimuli might emphasize different characteristics of the R 0
data, and that they could be used to induce different Given SU, the density function for each observation
biasen in performance. But the minimal diffirences in
performance with these stimuli (Figure 3) must temper is circular normal when phase information is available
these expectations. In the ohase-deaf ase, only the range r, is given; in

this case the observation ri has the Rayleigh distri-
Finally, we are particularly interested in the na- bution,

ture of the cognitive processes that arr brought to bear
on this generic problem. Our current r'ans are to con- 2 2
centrate more heavily on modeling the numan operator fo(ri) = (r,/o )exp(-r./2a2)"
(rather than his optimal counterpart) in an effort to I .
reveal these processes and the sourcas of their sub- where the "0" in the subscript denotes state SO is given. 0
optimality. We also plan to address experimentally "
some of the factors underlying the efficacy and utili- The joint density of the N independent observations in
zation of decision aids in this simple problem so that the swmple is, of course, the product of N such terms.
we may bring about more effective implementations ofdecisio aids i the oprationa Navy.Given SR the range ri for each observation has a '::"''-
decision aids in the operational Navy.

Rice distribution,

= 2 2 /22 ] 2 ri
f (ri) (ri/o )exp[.(rý+R )/2o2 J(R /ai12

where Io(.) is the modified Bessel function of the

first kind and order zero. The joint density oi the N -. -,.

independent observations is the product of N such te'rms.
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The likelihood ratio is then original task with phase information displayed (e.g,, -

N DOTS) does not actually need to compute Bessel functions,

2 2 it is sufficient to compute d and then base the decision
IF/fO exp(-R /2a )IT i i02), on an estimate of d* that is -acquired thrnugh learning.R i=l On the other hand,"the products of Bessel functions that

and the decision requires a comparison of its value for arise in the no-phase case apparently do not reduce tothe o dserved data with a constant K (cp/cp) given such a simple comparison. It does not seem likely that .ROOR humans could perform such complicated computations in
by the prior probabilities p0 and o. and the costs cR their heads--in fact, we found that a simpler (but not

opt'ial) rule based only on the mean of the sampled
di ances does nearly as viell as the optimal (the ROC

case of the phase-seilsiti-,e processor, this phase- curves for this processor nearly coincide with those of
deprived processor uses Bessel functions on distances Figure 5). Thus, as in the original task, the human
to arrive at a decision. But in this case we were decision maker can perform this task very adequately
unable to simplify the expression. Therefure, we gener- merely by computing means and learning through adapta-
ated "optimal" no-phase performance by computer simula- tion where to place the decision criterion.
tion of 10,000 trials to arrive at predicted ROC curves.

It is also of interest to compare the optimal ROC
These optimal curves are shown in Figure 5 for curves in Figure 5 (without phase information) w'th -h- -

sample sizes 1, 3, 5, 10, and 20; and parameters R = 1.2 those in Figure 2 (with phase information). ririt,
02 1.0. The observed data from the visual no- note that for N = 1 both theoretical curves coincide,

as we should expect since one observation does not
phase task in Figure 4 are re-plotted in Figure 5 for provide any useful phase information. Second, we find
comparison with optimal performance. that the no-phase curve for N = 20 virtually coincides

with the phase-sensitive curve for N = 7. We interpret
What can be inferred from the optimal models this to mean that the theoretical sensitivity for N - 20

(both with and without phase) about the way that our (no phase) is the same as that for N - 7 (with phase).
observers process the infomation? Cased on the We might guess that human performance curves for these
theoretical analyses, it is clear that the no-phase two conditions would also closely agree--and this is in
condition Is computatlonally more difficult then the fact the case as a comparison of Figures 5 and t is in
phase-sensitive case. The phase-sensitive processor fact t he s, s agrompar is gres 5 an d 2
merely computes the sample statistic d and compares it reveals. While this agreemen is gratitying. it would

with thp criterion d* (which depends on the computation be very useful to specify a functional relationship be- •
of a single Bessel function). A human observer in the tween the ROC curve sensitivities in the two conditions.

,' no Phase Inforrnoilon

V

1 2

O~ *10

P(FAI

Figure 5. ROC curves for an optimal processor deprived of phase information;
sample sizes N - 1, 3, 5, 10, and 20. Each curve was generated by simulation
of 10,000 trials. Plotted points are for a human observer with N 20 (from Fig. 4).
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THE OFCI ( A SPATIAL INFORMATICK FORAT CK DOISIG4 MAKING PERFORIAN IN
A 03 Pi3ANJsTic INOEAAIwn InTRATiQI TASK.

Captain Brad Scott Christopher D. Wickens

U.S. Military Academy University of Illinois at Urbana-Champaign

94SUMMARY cue (D -0) nay be a symptom that Is equaly likely
under each of two hypotheses. (ii) Its reliability

Eight subjects performed a probablistic information (R), the probability that the cue actually hins that
ý1 integration task in which multiple cues, and their value. given the observed value, may be less thsn
C disgnostic value in choosing' between the hypotheses. one. An unreliable cue value will have 0 correlation

Priw.try interest focussed an the comainrison of digi- with the actual cue it purports to represent. When
tal and analog-graphical displays, and upon sources cues vary in both D and R the optiman decision maker
of non-,optimality in the inforcation integration pro- should down weight the cue valence equiv~lently for
cess. Generally the analog displays provied superior both. Yet evidence suggests that humans do not al-
to the digital, and performance was better when in- ways do so, but instead may treat probablistic evi-
formation was presenited at a more rapid rate. Sub- dence as if it were totally reliable, when there is
jects appeared to be non-optimal in their treatment also va~ifaflity in D (Johnson et al., 1973; Wickens,
of reliability vs. dianosticity. However, departures 1983). This bias wll be referred to as the "as if"
from ,cptimality related to serial position effects heuristic.
and to the usne of the-appropriate model of inforim-
tionintegrat~on were 63~t obsnerved. (3) Display format. The probablistic values can-

(-~cerning kRan3dD liL.y b presented. in digital or anrlc{
format. Exprimental data suggest that precise digit-imnEDCrzIN al reading my not be an effective way of integrat-
Ing rapid information in order to obtain a 'tal ipark"

In modern command, control, and commuznication analog estimate of som value (in this cuse confi-
(C3) situations, the executive decision maker is of- dence). The theory of stimulus/central processir,'s/
ren faced with the. task of rapidly integrating a response (S-C-R) comp~atibility proposed by Wickens,
large number of nources of prctablistic information Sandry, and Vidulich (1983) suggests that information
or cues, that bear on: the likelihood that one or more requiring analog operations in working mory (such
carpieting hypotheses ;my be correct. The limits of as the updating of a continuous scale of confidence)
btmn decision making in such situations hkve been will be best served by graphical/pictoral display
amply documented (Wa~lsten, 1980; Slavic, Fischhoff, formiats.
& U~cht.enstein, 11977; Wickens, L983). In the present
report we consider 'ýhe ispact of three particular-
coguitive limitations in a simuzlated C3) scenario tn
which multiple sources or probablistic information EMMJNOT AV MEl¶W
are to be integrated and one of two hypotheses are to

be chsen.In the present experiment our subjects partici-
pated in a tactical battlefield seenario. They wpre
to imagine themselves as commanders of a defensive

(1) Seunta presentation. Wh'-n probablistic unit preparing to be attacked from (me of two direc-
CIAOs are presented sequentially over time there are tions, North or South. In each decision problem, di-
Lwo imsportant ways in which humans have been found to agnostic information concerning the msat likely di-0
depart from the optimal manner of integration. i) rection of enem attack was provided by a series of
They have been found to give too much weight both to 8. 8, or 10 intelligence cues (varied between prob-
the first cues in the series (anchoring or primacy), lems), Presented at either a aslo (5 sec/cue), or
as well as to the final cues (-eency), in situations fast (3 sec/cue) rate. Each cue wa identified by
in which all cueshdould, optimally be provided equal its source (i.e., air surveillance, grouand topogra-
weight. These are known as serial poito effects. phy), its diagnosticity (from 0 - 1.0), and its reli-
ii) In hayesias decision makfing tasksY~sujits often ability (0 - 1.0). problems differed in terms of the
adopt "averging models" of information integration net amount of difference offered in favor of the
In which informtation that weakly supports a hypothe- mot likely hypothesis, and this variable created
sis serves to reduce subjective confidence in that three levels of support: weak, mpdium, and strong.
hypothesis, relative to the alternative. In fact, 1Most limportantly, for half of the problems, informa-
weak evidence should, optimally increase confidence, tion was Presented in the aerbal format: a series of
although by a lesser degree than strong evidence cues Of the form shown in Figure 1. For the other
(Lopes, 198). half, the spatial format of Figure 2 was employed.

(2) elibiliy ad dagnoticty.A- gvencue One particular advantage of the spatial format, in
(2)Relabiityanddianosiciy. . gvencue which R and D defined the width and height of a.

may be related probablistical ly to a hypothesis in rectangle respectively, lay in the fact that the
One Of two ways. (i) lIe diagnosticity (D), the total worth of valence of the cue Is equal to the
Probability of the hyrzthesis given the cue value, Product of R x D. That in, the area of the rectangu- , ..-
maLy be less than one. A completely non-diagnostic lar cue. To the extent that Area Is a commdity that
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Ls directly perceived, then the cognitively loading problems the favored hypothsis was supported by the
nental multiplication of R x D is avoided in the s~- first cue- and on half it was supported by the last.
tial display. The subject must simply integrate are- This difference was used to examine serial position
ts for one hypothesis or the other. effects.

R~ESULTS

Problem and display variables. Table 1 shows
the mean accuracy of judgments as a function of each
of the inck.pundent variables eamndned in isolation.
There were no interactions between these variabl- .
and hence we present only the rw and column mens.
Statistical analysis of these data revealed that the

ENEo C;','; PV To' I•-Z 1 NORTH spatial dis:play gve reliably more accurate judgmcnts
than the verbal (T7) - 3.5, p < .01), that decision

OI~r'1C-.: ':. ',' accuracy was lower at the slower presentation rate0 T........ (T7 - 4.27, p < .01), and was lower with more vari-
-- . - - able cue values (T7 - 2.17, p ( .05).

More precise information regarding the use of the
prohablistic information was provided by the analysis
of cofidence ratings. These are shown In Figures 3
and 4. The actual ratings were transformed to a
range of 0 - 2D. On this scale, 10 indicates neutral
confidence, 2D extrewe confidence in the correct hy-
pothesis. Values less than 10 occurred when subjects
indicated confidence of varying degrees in the inwr-o"
rect hypothesis. The confidence data are shown in
Figures 3 and 4. Figure 3 depicts the strong effect

Figurw 1: Information display with verlsl code format. of the three levels of absolute difference in evi- - . '

dence on the confidence rating (F2, 14) - 25.1, p <
.01). These data are iqxortant in that they indicate

___,___________,___ that subjects performed the task appropriately, ex-
NJ E .I.... ' -,*-*- tracting more evidence from the data as more evidence

was warranted. The importance of the linearity in
1O0 ,these data will he discussed further below. Net evi-
go •dence did not interact with any of the other vari-

- 4007-1 ables. ,

10 so

-20.

*,0 -'30 I,-..., S' C -- ""o
-2; _ _ _ _ " .'" 4

=- i • -gt .;t:v " ,"- , "1

r -o

-soSOUTH tt . ,," S '

1 14l 411 36 3I9 20 I6 48 4S 541 to M ..

Absolute Difference
Figure 2: Information display with spatial code format.

Eight male subjects performed in the experiment Figure 2: Effect of net difference in evidence be-
ovr a period of two - 1 1/2 hour sessions. Fich tween the hypotheses (objective confidence)
subject received a total of 72 decipsion problems. on subjective confidence.
This mbter was formed by the orthogonal combination
of two display formats x three levels of problem size %.
I three levels of net evidence x two presentation
speeds x two levels of cue variability. This last
variable manipulated the degree of correlation be-
tween R and D within a problem, but will rot be dis-
cussed in detail here. Each problem consisted of an
alternating sequence between cues in favor of the
North and th 200th. On half of the trials the net
evidence favored the North and on half the South was
favored. Because the cues alternated, on half of the
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15.0 p and loweriag their net conlidence rating. The resuilts
of this second experiment revealed that subjects aere
in fact non-optiml in this regard, oerweighting
cuee with low levels of reliability.

w14.5- %

"E %, -
*0 I .

1 0 The practical impllcations of the present data "

S w are two-fold. On the one hand, the differences in
disp•lay format suggest an advantage to the spatial

V I O-display for the kinds of judgments requested here.
F ts.5 Fsl When informat3ikn is presented at the relatively rapid

.ate, chracteristic of both the slow and fast speed,
decision makers cannot be expected to perform the

Verbal Spatiol necessary mental multiplication on the numerals of 0
13.0 the verbal fonmt in order to determine the aggregate6 8 10 6 8 1O evidence. The "ectangular analog display provides

Problem Size (tolol cues) this informatiom in a more direct copatible format.
The advantage ot the spatial display is also support-
ed by the interaction of display format and presenta-

Figure4: Combined'effects of problem size, display tion speed on conftidk•nce. When the aisplay is spa-format, and presentatio n speed on subjec- tial, confidence is unaffected by speed. When it is
tie confidence n verbal on the other hand, confidence !-3 redued at .

the slower spWed, when the burdens on working memory
are enhanced.

Figure 4 presents the combined effects of three The secord set of implications pertains lem to
additional variables on the confidence ratings: prob- engineering guillelines in system desifx, than to an"
lem size, display format, and presentation -peid. appreciation of the kilds of cognitive limitations
The figure indicates that confidence was greater at faced by the decision maker in the multi-element . -,
the fast speed (F1,7 - 5.88, p ( .05), particularly decision-makinx task. Recognizing that the effects 0
with the ve..bal A:ormat (F interaction = 6.34, P ( observed here may be para .g-specific, these may be
.05). In addition, the figure reveals the interaction briefly summirized as follows:
between presentation speed and problem size (F 2 ,7 -
5.97, p < .01). Speed had little influence when the 1) Information integration is limited by memory
problems consisted of 6 or 8 cues, bit when the prob- factors. When the problems are long (10 cues)
lens were long, decision performance was lowered at and the display speed is slow, performnce as
the slow speed. measured by confidence, deteriorates.

Optimality in Infornation integration. Figure 3 2) Subjects appear to provide cues of low Lieli-
reveals that subjects extracted more diagnostic in- ability with greater weight than is aptiim .
formation as progressively more information was or
fered. What makes these data particularly signifi- 3) On the brighter side, subjects appeared to use
cant is the high degree of linearity between the the appropriate model of information intevrra-
objective and subjective confidence. Through analy- tion, eschewing an "averaging model" in favor
sis and model fitting described elsewhere (Scott of one that sums information for alternative
&Wickens, 1983), we conclude that subjects are inte- hypotheses. Also there is little evidence in
grating the probablistic information from the sever-,1 the present data for nonoptiul overweighting
cues in the optimal nanner, rather than following the of either early (primacy) or late (recency)
non-optimal avezaging strategy. cues in the sequence.

A second analysis was performed to determine if While it in possible in the long ran that engi-
there were marked serial position effects in the neering corrections may be implemented to circum'nrt
data, indicative of either anchoring or rmcency. This those coLnitive limitations of the second set that
was done by oeffparing performance on trials when the are encountered, it is at least important in the
correct hypothesis was supported by the first, and by short run that their existence be acknowledged.
the last cue in the problem. Neither accuracy nor
confidence differed between these two sorts of
trials, allowing us to conclude that either serial AK"O:-WUlDG-E.TS
postion effects did not occur, or if they did, then
the primacy and recency effects perfectly balanced This research was supported by Contract OND00-14- ..
each other. 79-C-0658 from the Office of Naval Research Engineer-

ing Psychology Program. Gerald Malecki ws the tech-
Finally, a second small experiment was conducted, nical monitor.

using the same subjects, to determine the extent to
which R and D may have been treated asymmetrically,
with subjects showing biases to overweight low levels
of R, applying the "as if" heuristic and treating *-.-- -.
those cues "as if" they were fully reliable. This de-
termination was accomplished by constructing nroblems _
such that if the "as if" heuristic were employed,
subjects would be induced to shift confidence toward
the incorrect hypothesis, thereby producing errors
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Table 1

Percent Accuracy

"" Trial L0w High
- Variability 97.2% 92.3$

Coding Spatial Vertal
97.6% 92.0%

" Tim Slow Fast
"93.4% 96.2%

Weighted 5-10% 15.20% 25-30%
Difference 94.2% 94.3% 94.8%

Set Size 6(Total) 8(Total) lO(Total)
95.3% 95.3% V3.go



DY•ELtPNKNT OF A GEUDALIZED lUNAV-IRACINE INTERFACE

0 B lits E. Knox

SLockheed Electronics Company, Inc.
-" • 1301 U.S. Highway 22

Plainfield, New Jersey 07061

jO . Abstract the met intuitive model they can bring to
communication with a machinel to the extent that the

The development of a Generalized Human-Rachine model io reflected (I.e., not violated) by the
Interface in driven by consideration of human machine's activity, communication beteen human and
communicatio- capabilities and linltatic:.a. The goal machine will be aimplified, efficiaent, nd offective.
is to develop a system which provides machine The goal of the OMNI program is to develop a
capabilities similar to those required for computer-baded model of the structures of humn
c ommunication apong human beings. System features co€municai'lon.
resulting from this approach and incorporated in the
design include: application independence, attention
monitoring, dynamic device assignment, human System Overview
performance monitoring, and natural language
processing. In addition, a special data management An overview of the OMNI is presented in Figure 1. The
'structure has been designed. System architecture and interface itself consists of two major components: an
development progreams are described. d. adianced console, and software which Is the computers

S. -'communication intelligence. . The OIU Is truly an
Sinterface -- between the human being and a *host
*Introduc~tion system,* which ti the erest of the system, of which a

particular human and GIll are only one subsystem. For
There is little disagreement that the human is a example, the *hoat systes' might be a network of other
necessary and critical element in complex system, and humans and their workstations, a data acquisition and
that poor performance on his part may impair the processing system, or a host computer in the usual
effoctiveness of those systems. As acknowledgement of sense.

* this, there has been a recent, renewed emphasis on -

'Human Factors Engineering' and related issues (such as
'user-friendliness') In the design and development of
new systems. However, the primary focus is often W USUUUnm.nUU.mmmUUUUUnmUmg

placed on the input/output devices to be used in the m5 ... RAL
human-machine interface (123 moreover, the findings of K WiWAC4 as
recent psychological research are often unknown to the a
applied cz2sunMty, where those basic results would have ___-_

a significant iapact on the design and development of a a
new eyateN. & mst distressing .:nse.w.ia of thiso
situation is tb'A many systems are designed and
developed under circumstances where there Is rarely

* sufficient time or money to evaluate design decisions, a*
and those design decisions are only slightly influencd Ii
by empirical results that have been obtained under I
o scientifically valid conl.i~ons. so

sI uggest that, while the input,'output devices U ADVANC= C •
essential components of the 2uman-machine interfaci, N C €OMMiITION

" they are not a sufficient upacription of that U L n•

interface. In addition, although many properties oO ,.

the human-machine interfaie that we consider importan.
are present implicitly In the choice and appli-ation 0 FIGURE2 I
devices, the;e more subtle features arm often obscur
by an obsession with the salient, physicalS characteristicu cf the hardware. A spec•ific "advanced console' is only one exanple of

many possible configurations. A particular console

This paper will dscr.1 he the design and development of configuration will depend on the operations and tanks
a Generalized Human-Machine Interface (OMNI). This to be performed, the environment (e.g., land, air, or

work has assumed, axiomatically, that if human "a), and the platform (e.g., tank, living room, or
communication with machines is to be successful, helicopter). The 'advanced console' is a gon.&ric
machines must 'know' something about human reference to advanced devicess such an voice
communication. That is, communicatior among humans recognizers and touch sensitive displays. Thes
depends on the sharing of common symbols, common devices are advanced by virtue of their being easier
assumptions, and common attributes of human cognitive for humans to use than the traditional buttons, knobs,
abilitiess since human communication is the 'model' of switches, and keyboards.
comaunication of greatest familiarity to humans, it is

The GONI system architecture Is 'generalizod" In the
Copyright 1983 by Lockheed Electronics Company, Inc. sernse, that it neither depends on nor incorporates any



leatures of a specific mpplication. This is Natural Lanauage/Natural Lanoaune Processing
accomplished through a complete separation of the
structures of the system (i.e.. the-code) and the data Natural lU .uage (21 In a' primary, if not the moat
required by a particular system. This design feature important method of human communication. As the
is not a simple consequence of adopting good concepts to be *discussed* by human and machine have
programming techniques. Rather, it results quite becoame sre complex, and computer use by the general
naturally from our rttempt to model human abilities, population has increased, the necessity for natural
where many cognitive attributes and skill. do not language processing capabilities in computers has
change as a function of the information being increated. The atural language capabilities of
manipulated, humans, however, are still far from being fully

understood. Consequently, natural language proce-nors"Of course, for this generalized SNI to be used In a for computers are marginally successful.
particular system it must have access to the relevant
data and constructs of that system. (By analogy, one In developing natural language processing as a WIRN
must know about *meter', "movesent', and *key*, for a component we were concerned primarily with its
discussion of music . as opposed to 'rhyme scheme', inclusion as one feature of *communication
'verse', 'metaphor', and 'alliteration' fir a intelligencel" the processor ve've designed in not
discussion of poetry.) Such information is made known comparable to those developed in laboratories where
to the GHWI through a .process called *tailoring', as natural language processing, get so has been the
shown in Figure 2.. The application-specific features primary focus. E31 Rather, the processor allows a
introduced are the data used by the GINI components certain amount of flexibility in the way a human can
(discussd below), and the console detion which issue requests or enter data to the system.
consists of the choice and arrangement of input/output
devices. As a by-product, this architecturally-driven The Natural Languaoe Processor (WL?) is a special
approach to the development of an application-specific component of the more general Decode module which
NHI allows economy in the coat and speed of new system interprets r.ll human inputs to the system. The
development by having the 'head-start" of a common, translations made by the NLP are determined by the
basic system. grammar which we designed. This grammar handles

queries about the STATE (4) of an OBJECT's ATTRIBUTE;
the comparison between the STATEs of two OBJECTs, or
between an OBJECT's STATE and some specified VALUE; the
CONDITIONALs, IF, WHEN, WNENEVER; and the entry of an

1A"" OBJECT's VALUE. The processing consists of "keyvord*
ATA: I, identification (i.e., lexicul analysis), syntactical

APIJA1UU analysis in which STATEMENT CLAUSEs are synthesized byAMU= simple left-to-right processing rules, and semantic
Sanalysis in which features like THING-ADJECTIVE and
ACINE DATATABL NLAB OBJECT-STATE agreement are assessed.

AttentionSharing and Switching/Attention Monitoring
and Switching

Vhether we consider communication between tvo people,
or private thought, it is rarely, if ever, true that a
'topic' in exhausted with no intervening digressions oriFIGURE 2 divornions to other 'topics.*• Intuitively, nach
multiplexing among tenics appears to be a useful,

GH!I Components necessary, and possibly unavoidable feature of human
thought. resulting, at times, in creative insights

The computer components of the GHNI were designed to drawn from consideration of eemlingly unrelated ideas.
address specific human capabilities and features; the
corresponding human and computer t sit@ are shown in In perfbruing tasks, either alone or with others,
Figure 3. The fifth major c onent, the Data Base switching among topics is often necessary to understand

* Interpreter and its associated rnata Base, was not a particular point, or is dictated by external events
" " dictated primarily by consideration of human which u ust be attended to an they occur. The switch"capabilities. Rather, it allows us to preserve the from ont topic to another is rarely signalled by an

application independence of the system. These five explicit indication, and usually happens with no loss
major components are described below. of gene al continuity. Noreover, a return to a

deferred' topic can often be accomplished without a
major re apitulation of completed tasks or already

HUMAN CAPABLITY COMPUTER NTELUGENCE discussed ideas) that is, the topic can be continued at
S.the point where it was suspended.

a'ioNAlIRAL LANGUAGE C NATURAL LANGUAGE a couplet operation on nome system will often conuist"PROCESSING of many s~re tasks then can reasonably be active at any,"particula moment. On the one hand, all tasks are nct
- ATTENTION SHARING . ATTENTION MONITORING needed at all times; on the other hand, there are

AND SWITCHING AND SWITCHING Limits to a human's multiplexing abilities, thus making
t. at best, superfluous and, at worst, confusing to

SoNITE5W"SORY a DYNAMIC DEVICE have "ore tasks active than he can attend to. Thus, at
.OUIVAL&NCE ASSIGNMENT any instant in an operation, only a subset of all tasks

should be active; however, the number of tasks and
ON=IU A ERROR a HUMAN PERFORMANCE their identities cannot be defined a iorio since the

MONITORING particular subset in dictated by ex.-rnml events, and
the chosen activities of a particular individual (e.g.,

FIGURE 3 an operator). (•)



The Attention Monitor holds the definitions of all the device of choice if that device is being used by
TOPICs of an operation. These definitions consist of some other, possibly higher priority, task.
all TASKs of a TOPIC and the ordering constraints for
their execution; the order operators specify The Dynamic Device Assignment (DDA) component of the
completion, sequencing and repetition requirements for GHMI in responsible for generating the *optimal*
each TASK (and subsets of TASKs) within a TOPIC. configuration of TOPIC-to-(Virtual)Device assignments

at each point in an operation when the set of active
When the Attention Monitor receives an input (either TOPIC. changes. A virtual device may be identical tc a
from the human or the hoast system) it determines which pnysical device (e.g., a display unit), some portion of
TOPIC the input in associated with. If it is a physical device (e.g., a quadrant of a display), or
identified as a TASK of an ACTIVE TOPIC, checks for to a cluster of portions of physical devices (e.g., two
sequence and data range limit errors (if applicable) quadrants of a display and a voice synthesizer). For
are made; if no errors are detected, the input, along each TOPIC, we specify the set of virtual. devices which
with a TOPIC IDENTIFIER, is passed to the Data Base can be used for display and control of the information
Interpreter. If an error is detectedo the input is of that TOPIC, along with the "suitability metric' for
passed to the Human Per-ormance Monitor. the use of each virtual device.

If the input is not part of an ACTIVE TOPIC, it is a The DDA configuration processing is initiated by a
TASK of a NEW or DEFERRED (i.e., previously active, rwquest from the Attention Monitor to activate a
presently suspended) TOPIC. The Attention Monitor previously inactive (i.e., new or deferred) TOPIC. The
identifies the TOPIC and attempts to activate it by resulting configuration depeonda on (1) the number and

issuing a request to the Dynamic Device Assignment identity of active and to-be-activated TOPICs, (2) the

(DDA) module. That is, whether or not the 7OPIC will TOPIC priorities, (3) the available virtual devices, . -.

be activated depends primarily on the availability of a (4) the TOPIC-to-device suitability metrics, and (5)

device for that TOPIC. The necessary evaluations are the 'transition penalty" for moving an already active

made by the DDA module. I1 DDA determines that the TOPIC from one virtual device to another.

TOPIC can be initiated, the sequencing structure (a
data array) for that TOPIC is integrated into the This DDA processing may result in an active TOPIC being

Attention Monitor's dynamic TOPIC pool. deferred, or in the request for activation of a new
TOPIC being blocked. The Attention Monitor in informed

Intersensory Eguivilence/Dynamic Device Assignment of any changes in the set of active TOPICS and makes
all necessary modification. to its TOPIC array. If any

The term *intersensory equivalence* is a general configuration changes are required as the result of DDA

reference to the human ability to represent the same processing, this information is sent to the devices,

information in a number of different ways. where the new configuration is implemented.

Specifically, the representations may require the use
of different sensory modalities. For example, one may Human Error/Human Performance Monitoring

apepk a person's name, which requires the use of the
speaker's vocal-linguistic apparatus and the listener's Noise is an inherent property of all physical systems.

auditory system, or write it on a blackboard, which In particular, noise in the human system, which

requires motor production and visual processing sometimes results in human error, is an inescapable

systems, and although the physical representations are fact which may be reduced through training, education,

quite different, the meaning derived in both cases is or high motivation, but not eliminated. Specifically,
the same. it can never be demignrl out of a system without fully

automating that system.

This 'multi-modal" representation capability in used
frequently, particularly when people are having The danger of human error in existing systems results

problems communicating aome idea (e.g., 'Can you draw from the high credibility granted to any human input.
me a picture??'). Often we are forced to use a less Those inputs are propagated through systoms, and, if

than optimal representation because the modality of they're inaccurate, the results may he disastrous

choice is not available under certain circumstances ua..wss some human detects and corrects them before

(e.g.. when we're forced to use the telephone to give their full impact is felt. Of course, if the correct

directions to some lucation). In general, while it may inputs were known, a priori -the process could be

be the case that certain representatiunL are better or automated and the requirement for the human eliminated.

worse for particular kinds of intormation, it is Most of the time, however, the human role in a system

certainly not the case that there iL a single modality is to perform those tasks which we don't know how to

(or a single representation within a 6odality) for the automate. This presents a dilemma: How can a system
communication oi a specific piece of information, detect an error if it doesn't know what the correct

input dhould be!

This human capability of intersensory equivalence
impliem, first cf all, that alternative methods of A related issue concerns how well the human should (or
presenting th- same information should be a machine must) porform in systems. System designers usually
capability; also, it should be possible for the machine specify worst case limits on human task performance,
to know when the human has communicated the same such as maximum time allowed for a particular a-:tion or
information, even when different data representations RMS erroz for some entry. These values are often
have been used. When this concept is translated into a arrived at by an arithmetic manipulation w)'ch takes
human-machine interface design it means that different the total system throughput requirement, subtracts the
%evices (e.g., a display, voice synthesizer, etc.) must cont.,oution of the non-human (i.e.., deIL.ned)
be capable of encoding or decoding the rame piece of comporpentu, and secifies the residue as the tolerable
information, limits on human performance., While some comparison of

human requirement& and human capabilities is made to
In fact, such flexibility in a human-machine interface ascu;tain whether the human will be able to perform as
is essentially dictated by two concurrent developments: specified, the analyses are most often superficial. 1.-
the transition from dedicated devices to general
purpose devices, and the growing complexity of There are a number of issues to be considered if the
semi-automated operations. In practice, this means G6M1 is to reduce the frequency of human errors.
that a particular task may not always have access to First, the human component is not a system xodule
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designed by human bvingal thus, any predictions of 'Teach Mode* in based on the philosophy that a human
human performance muet come from models derived from who discovers his own errors is less likely to repeat
observation of human behavior. A particular human's them than one who merely has his errors pointed out to
performance can be judged as good or bad only with him. Thus, when an inexperienced operator in a
respect to normative humna, performance; it can only be non-critical situation makes a mistake, he in taken
said to be desirable or undesirable with respect to% any through a meriet of successively more explicit hints
other, arbitrarily specified, design requirement. about the identity of the error; after each message he

is asked to correct the error if he can. If he cannot
Second. many human errors are not content errors; delay find his mistake after all hints hive been supplied,
time in reaction to events, multiple corrections to a the error is pointed cut and he is asked to re-entvr
single input, and total time to construct an input are the command.
all amsociated with poor performance and could serve as
data in the assessment of performance. Date Bane Interpreter

Third, any measure of human performance is a (possibly The Data Base Interpreter (DBI) provides a mechanism
n-dimensional) random variable; therefore, decisions for storage and retrieval of information used by the
about performance muet be based on statistical 3I3 system. This information may come from the human
inference. or the host system, and may be rapidly changing,

relatively static, or even a constant value, and may be
Fourth, the error, which can be detected by the machine continuously in demand or of only momentary relevance.
must be caught at a point in the system which is near The design of DBI was motivated by these attributes of
to the human who made them, before they are passed an the information and its storage and retrieval needs,
to the system at large an a human input; moreover, an and not by an) explicitly human characteriatics, as was
attempt to correct these error@ should be mde ;t the the came for the oth&r HI modules.
same local level as their detection.

Another consideration in the design of DBI was the
Fifth, human performance monitoring having features of philosophy of a general HNI architecture, demanding
the preceding four points suet be a continuous and that any changes required by a new application be
(near) real-time HMI capability. Individual human accomplished by changes of data rather than by
performance will vary as a function of task, day, and recoding of the 113I software itself. As a result of
time of day; performance evaluation on any crude time this approach, any PelCialized processing required by a
schedule will do little to reduce system failures specific application must be realized within the
attributable to human error. application-specific data base, and executed by the

general-purpose Data Bame Interpreter.
A Human Performance Monitor (CPN) having the properties
described above is summarized in Figure 4. At present, In the current implementation, this concern for
the HPM component implemented in the GH6I system has no separation of application-specific data from
assessment capability and only minimal measurement and general-purpose code has been satisfied by implementing
feedback abilities. Design work for the complete all application-specific processing in interpretive
mod.le in in progress. instructions ohich are stored with each data base

object and are executed by DBI. This approach has the
ioasdvantage of being inefficient for high volume

FEFUM computation or very large data sets; these demands
IADATA BASE could, however, be satisfied by other parts s'f the

EWSEO DEVEOP i PERFORMANC yatým outside the Human Machine Interface, or through
execution of compiled subroutines by DBI, at the

IL- ArO M expense of pure software generality.

C0ANGE F Two major advantages of employing interpretive
WAY DATA rinstructions or application-specific processing are.

first, the ease with which the system can be enhanced
COMBINATION Of to satisfy new requirement. and support new

mm MRFORMACt capabilities (e.g., new sensors or new sensor
11M KTECTED processing algorithma), and second, the efficiency with

which operator tasks can be reallocated among H11I-based
C vNworkstations, to satif•y the anticipated requirements

SAUA JECTIVES of Listributed processing systems, including
*ETC RA'S DAT distributed Command and Control. In the extreme, the

68 HOSTOSTM. role of an individual workstation could be completely0 RKLOAO .

ISTRIBUTOR redefined by the downloading of data.

The techniques used by DBI for storage and for
FIGURE 4 retrieval are analogous to forvard-chaining and

backward-chaining, respectively. That is, when new
information is provided to DBI, it is stored as the
value of the appropriate data base object, and the

Currently, there are a number of errors that can be values of other derived objects will also be
detected by the Natural Language Processor and the automatically updated if they are listed as RECIPIENTS
Attention ia~nitor. The** are passed to the XPM module of the original object. This "forward-chaining" of
where one of two forms of feedback is given to the updated values may continue to recipient objects
human. 'Quick Node*, designed for experienced outside of the database -- the human operator or the
operators and urgent situations, ,mmediately points out host system -- if one of them is to be informed of
the operator's mistake to him. He is then directed to updated value..
enter a corrected command, or in those cases where the

e oyetem can guess at what the operator Intended, he is When retrieval of information 'is requested, DBI may
* / asked to verify the system-corrected command. Upon have the exact information already in storage, an -
• positive verification, the command is executed. recipient of the automatic updating process described
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above. Not all objects are handled in this way, The next TOPIC to be developed would include tool&,
however, since some objects are requested much leon such as unit position projection, for target
frequently than their component inforantion is updated. correlation. fusion and aggregation.
For the" objects, retrieval requires the derivation of
the object's value from the stored valued of
lover-level DONOR objects. This *backvard-chaining"
retrieval of current values can, for some objects,
result in requests for information being issued tn the S
human or the host if one of them is the ultimate source
of such information. Thus, DBI manages the flow of
Information between human and host by providing both
automatic updating and retrieval of data upon request.

Figure 5 illustrates the architecture which ties these
major GHNI 'communication intelligence* co~ponents
together, along with their supporting structures; the
design is itplemented in Pascal.

MUSS 
FIGURE 6

DYWAK The last piece of the application is the 'host* in the
system. In the present came, the host, is a message
network. A simulation advances 550 enemy tanks and
armtred personnel carriers in the area of interest; two
line-of-sight sensors scan sectors of the battlefield
and report number and position of sighted targets.

saw Sensor messages, with the date-tine group of sighting,
KVK[ HAAN are generated and sent to the Mll. The@e data form the

"basis of the analysis work performed by an operator.

The full system is implemented on two microprocessors,
OKW(M with the allocation of processing as shown in Figure 7.
DATA 6ASE In the past we planned that the RMI software would run

on a s•:;,'le processor; today we anticipate that
FIGURE 5 multiple processors, possibly me dedicated to each

module, will eventually be necessary to handle the
high-speed processing requirements of the system. We
have not begun to explore the implications of such a

An Application parallel architecture. The system has just recently
become fully operational. Therefore, there are no data

To test the H1I algorithms, a human must interact with as yet on system or human performance.
them. For that to be possible, there Must be
communication devices and tasks for the human to
perform. We have designed and fabricated a prototype GHKI'm Role in Dtstriouted Systems
console which houses two touch-sonsitive high
resolution displays (one color, one monochrome), a As envisioned by many people, the architecture of
keyboard, and a voice synthesizer. This console serves distributed information processing and decision systems
as a testhed for the GHMI, and allows us to investigate will require that resources be shared among individuals
the use of new input/output devices, in the network, that collaborative analysis of

situations be possible, and that the allocation of
The operational tasks we've developed would be used in responsibilities to a particular individual be
most command and control situations. At present, the dynamically defined as a scenario develops. To this
land-based scenario includes map set-up, friendl, and point, we have addressed a single node of a network,
enemy asset review and display, and network message consisting of one human and the Hfil system. What
review. Help functions, and alphanumeric readouts, information could the NHI subsystem contribute to the
which provide graphic symbol translation and status 'ull network?
inforeatio-, are also available. A photograph of one
interactive screen display appears in Figure 6. At The HfI has moment-to-moment knowledge of the tasks an
this time in the operation, the Friendly Assets and individual is engaged -in and of his current
Enemy Assets Review TOPICs have been activated along performance. In particular, it would recognize
with the situation display. The bar across the top of indications of overload or fatigue, or of highly
keys indicates an on-state: in the main menu at the efficient functioning. Such information on all
bottom of the screen, it indicates the activation of individuals in a network could be sent to an
topics; in the different TOPIC quadrants, it has the independent, higher-level system module responsible for
effect of plotting the designated units on the task allocation. With the addition of other resident
situation display. (71 The Dynamic Device Assignment knowledge (such as doctrine), this module woule have
module is responsible for arriving at this particular the necessary information to dynamically define task
display/control configuration for the active topics. assignments for each workstation so as to optimize
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total system performance. (Notice the simiI,~Aity, by Conclusion

analogy, to the G1HMI Dynamic Device Assignment undult;
in the distributed *ystem cam*, .n individual Is a We have provided an introductory overview of the
'device' and his set of responsibilities is a 'TOPIC.*? Generalized Human-Machine Interface designed and

developed in our laboratory. We believe it to be a
unique approach to the architecture of an Interface
between human and machine, one which should facilitate

8fl.VE AW me.U high-level communication. Our prototype, however, is
_______________ COATAmjust the beginning of what will be a much longer, but

UNX fascinating endeavor which will depend on the evolving

cmwm O~K"5 understanding of human information processing and the
C $111"ION IVA revolution in momputer technologies.
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Rbstract . ular promise. In particular, we looked for command judg-
ments where there was significant room for imyrovement,

)A new generation of decision aidS, based on person- where any improvement would have a high impact on a mis-
1i lized decision analysis, is being de)eloped to support sion, and where PDA appeared to have something to con-
A•the judgmental component of tactical tP. They structure tribute. Three types of judgment were considered:

and quantify juegments of uncertainty and value, with a assessment, 3lertment, and action selection. The situ-
view to enhancing the soundness of decisions and reducing ation identified for detailed attention was approaching _
the decision eaker's burden. Attack submarine examples an enemy submarine with intent to attack, which included
are presented directed at: assessing target range; each type of judgment. Specifically, we addressed the
alerting to dangers and opportunities; and choosing a judgmental tasks of assessing target range (which be-
time of fire. r came the -rimary initial focus of our project), alerting

to critical situatious, and choosing the time to fire a
Problem: How to Support the Judgmental Lorpec.

Component of Tactical C
2

In each case, the obJect was to explore and develop
Tactical command and control involves decisions on a technology for aiding submar!,ie commanders and their

how to respond to changing awareness of dangers and op- staffs in making these judgmen(s5 specifically to help
portinities, for example when to fire a weapon at a tar- them to assimilate the data and the expertise available
get. These decisions inevitably involve a blend of to them and to combine them effectively, with contribu-
hard data (for example from sensors) and personal judg- tions from their own judgment.
ment (say, on the quality of sensor output). As tactical
warfare and the threats it addresses become more complex, Assessing Target Range
the judgmental component comes under increasing stress,
particularly in the context of distributed decision The judgmental task chosen for our primary effort
making. Decision makers and their supericrs find them- was the assessment of target range (including a margin
selves in need of aids which will make the judgmental of uncertainty) in the light of multiple conflicting
tasks easier to perform effectively, estimates. A logical algorithm for this task has been

developed with support from the Mathematical Sciences
Personalized Decision Analysis (PDA) Division of ONR.[3,4] It takes individual solutions

as a Promising Tool (estimates) and assessments of their accuracy (and in-
terdependencies) and generates a pooled estimate with

The Office of Naval Research has funded a program a band of uncertiinty changing over tine (Figure 1).
of applied research to adApt the tools of personalized
decision analysis (PDA) for this purpose.[l] FDA is a
recently flourishing technique, groundci in statistical ".'T.N'.T
decision theory and engineoring pcychology. In principle, " EST[I0T[Q RNC ANOX FRUIYINT[RV; __ 0 1: 5
it can be used to enhance the quality of decisions, to 1-
reduce workload, and iLI some cases, to manipulate the l~I.
command and control process. Its essence is to quantify i2• .-
the judgmental elements in a d•-45iun tasK und to display T r
their action implications. In particular, uncertainty Ina log;;
is measured by probability, value tradeoffs ai,. Tea- d V.... Iota..
by utility, and the preferred action is characterized as I I INS
the one with the highest expected utility.

In 1979 a new effort was initiated by Eng.ineering H8 1 ZOOS
Psychology Programs of ONR through Decision Science Con- -__

sortium, Inc., aimed at validating the practical value of [ID MATE KASTA KASTE KASTF OOLED
this concept.[2] The intent was to foster in the fleet Mo0 Mo 32M 6200 1850 611 ..
the actual implementation of at least one concerete vari-
ant. This was both to provide a stringent test of the IRFORMATICN PARAMETERS NEXT TIN'
applied merit of the concept and to uncover the most pro- SOURCES OIS•A PERIOD
mising directions for further development. TINE/RANCE PRINT 6I10=4 I ER RESTART

Submarine ASW as a Testbed DISPLAY DATA IU E I FROWN

Attack submarine command and control was selected Figurc 1. Illustrative Range Pooling Pisplay

as the testbed and within it the approach and attack ASW
scenario. The initial thrust of the effort was to re- The sourcr- of the accuracy estimates may be personal
view the range of command and control activity in an at- judgment or previous analysis (say, by fitting para-
tack submarine in order to identify situations of partic- meters to exercise data). The algorith.. appears well
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enough established now to permit primary attention to of the taxget's being within own ship's weapon range,
be devoted to user interface issues. An early version and range accuracy being within, say, 2000 yards. The
of the algorithm showed substantial improvements over aid emits a signal when critical thresholds oý probabil-
individual solutions and over the "system solution" when ity (which may be preset or set by the user) are reached
tested on fleet exercise (Rangex) data.[51 Work on (shown as broken lines in display). Asstssmants from
engineering psychology aspects of eliciting judgmental which the probabilities are derived are shown on the
inputs and presenting outputs is being supported by the right to permit validation by the user. (Note that they -
Psychological Sciences Division of ONR.[6,71 all involve range accuracy, which would be output from

the range pooling aid, discussed above.)
An interactive graphic computer program has been

developed based on the responses of subjects representa- The time-of-fire decision (how long should I wait,
tive of ultimate users, in situations which approximace attempting to remain undetected, before launching an
realistic engagements. Figure I shows a typical display attack?) involves both uncertainty and value. There are
in the context of which the ussr can change the bias ad- the competing values of killing the target and preserving
Justment (shown as a wiggly bar) or the 80% limits, and own ship, and uncertainties about the consequ:aces of
see displayed the resulting change in the pooled assess- any given course of action. Timing is of the essence:
ment (shown at right). Figure 2 shows another form of A premature attack may both alert the enemy and miss;
desired output, in which pooled assessments are plotted yet delay increases the risk that the SSN will be o.ýtec-
against time. Implementation issues (including inter- ted before attack or that the opportunity to attack will
face options) have been proposed for investigation in slip away. For the time-of-fire iacisioa aid, all trese
an experimental teatbed in collaboration with a Navy considerations are put tosethee into a "decision tree,"
laboratory (NUSC). Subsidiary PDA aids for assessing described in detail in 161.
error In specific range estimates as a function of
several sources of error, have also been explored. Fijure 4 shows the basic features of the t

4
me-of-

fire decision aid. It predicts the relative value of
_______________________________waiitiig to shoot at -.arious points in time from the pre-

OUTPUT sent, given a choi'ýe if own ship maneuvers. The paint
DISPLAY Single at which relative value is maximized is the reconnended

Probabilistic timc, all things considered, at which shooting has the
Range highest expected payo-f. For purposes of comparison,

the straight horizontal line, marked "Ratire now, is
t the value of simply leaving Zhe scene. (As the approach

scenarios proceed, of course, the display would be up-
dated to reflect new infor-ation.) Such a display would1 .i have two finctions: to help decide now whether or not
to fire, and, if the decision is to wait, to help meke

J preparations for a future firing.

Time

Figure 2. Time-Range Display TIME: 1405

50t i
Plannirg Attack and DetermininS Time-of-Fire Expected P.ath k eSRetire

Utility 0 Now

In addition to target range pooling, other aids NowUlt Nowof
supporting the time-of-fire decision have been ad- Shooting 50"
dressed--for assessing the probability of hitting the at AT* Path B
target, alerting to critical situations, as well as

-actually recommending a time-of-fire. These aids are, -100 -.
however, at an earlier stage of development: the Idgical 0 1 2 3 4
algorithms have been identified; the form of user inter- AT
face has been anticipated; and further develupment is 1405 1417 1429 1441 1453
being supported by IBM Federal Systems Division.

*Conditional on Path
Figure 3 shows the display format of an alerting O/S Maneuver Assumed

aid. It monitors range-related probabilities such as
being within a certain target's counterdetection range, Figure 4. Attack Planning Aid: Output Display "

STATUS
CURR04T STATUS -THRESHOLD VAILIDALTIC'N

_RTST -_RL_._I A critical issue, currently being explored, is how
O/S Within T2 CD Range best to provide these inputs in a way that does not put -.

T on unacceptable burden on submarine command staff in the
C - heat of battle. The intention is to have the displays

RT2 Rc largely driven by mcre primary input data generated rou-
WihCD n tinely on-board or from the results of previous analysis. - .T2 Within O/S p Range T - 2'.Ji.

S- A Special Role for PDA in Distributed C
2

P RWO/S PDA may have a particularly promising role to pav"
REror__200O___T in distributed tactical C

2 
systems. Decision-analytic

Erroz < 200 Yds =. aids can influence the Jecisiuns of subordinate comman-.-..'ders in the system so as to balance autonomy from and

control by higher authorities.

-3 1________ For example, an aid to indicate when a submarinc
weapon should be fired, such as we have discussed, would

Figure 3. Alerting Aid: Output incorporate assessrints of uncertainty (for example,
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probability of kill and probable target range) an, value Conclusion
judgments (for example, the relative importance of kill-
ing and avoiding being killed). The inputs to the aid We have argued that there may be an increasing
may be specified ahead of time by higher authority (for role for tactical decision aids which quantify judgment.
example, value tradeoffs and the assessment of threat The danger, of course, is that they may demand more judg-
characteristics and sinsor performance); or they can be ment in their input than they save in the judgmental
provided on the sp=- b*' the aid user (say, an assessment task they are designed to aid. This is why we attach so S
of target intent). Th., aid can be used centrally by a much importance to the human engineering aspects of aid
Battle Group commander or by a subordinate commander. developuent. Solving the people problems is more impor-
The output of the aid can be binding on the subordinate tant than solving the logic problem.
or merely suggested guidance.
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A KNOWLEDGE BASED INTEPACTIVE PROCEDURE FOR PLANNING AND
DECISION SUPPORT UNDER UNCERTAINTY AND PARAMETER IHPRECISION
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Chelsea C.. White. III
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University of Virginia

Charlottesville, Virginia

, Abstract activities as deemed appropriate for the task at 9
hand [1,21. Especially whev there are a large number

Ssnarizetkey features of an interactive plan- of alternative courses of action under consideration,
Lng and decision support process for multiple criteria the decision process will typ~cilly involve mired
Ltervative selection situations. Probabilities, scanning, where some noncompensatory rule is first used
:ility scores for the lowest level attributes, and to eliminate grossly inappropriate alternatives. This
-tribeite tradeoff weights, i e., the parsmetere, can is then followed by one or more compensatory informs-
t imprecisely described by set inclusion. Within a tion evaluation operations that results in a dominance

.ecified structural model of the decision situation, structure which enaoles final judgment and alternatvv2 9
ie process allows the decisionmaker to iteratively selection.
;lect the mix of narameter value precision and alter-
ative ranking specificity. By selecting th;s mix, the The resesch discussed here is based upon the-

.ecisionmaker is able to direct the alternative selec- hypothesis that people are able to evaluate alternative
Lon process in an interactive manner, using alterna- plans and decisions efficiently and effectively, and
Lve selection strategies based on behaviorally mean- with low stress, when there is a clear dominance pat-
agful dominance search strategies. Emphasis is place% tern among alternatives that enables establishment of a
a the motivation of the research and the behavioral sufficiently discriminatory priority structure. Our
Plevance of the support process. goal is to provide a knowledge based decision support .

process that enhances the quality of the dominance
1. Introduction structure used for judgmert and choice.

The process of choosing among multiattributed The next section will present a summary discussion
Iternativeo often involves an initial search for a of the features and structural constructs of our deci-
aminance structure and ultimate identificatioz, of a sLon support system. The following section presents a
at of nondominated alternatives. By definition, a more detailed discussion of these structural constructs

--ondominant alternative is one which is not worse than and introduces some of the modes in which the support
ny other alternative on any attribute and which is process can be used. Then we diacuss some behavioral
etter than each other alternative on at least one issues that relate to the conceptual design of ARIADNE.
ttrib-ite. In most decision situations, however, there The list of references contains citations to a number

-a no single alternative that dominates all other of works which discuss the algorithmic content of the
ltern:at.vea, at least initially. In such decision decision support system.
ituaionas, the decisionmaker typically "adjusts" the
tructure of the decision situation, and parameter 2. Features of the Decisxon Support System
alues within this structure, so as to identify a
eminence structure which contains a single noadominant We now investigate concepts for the design and
Iternative. This search may involve rational activi- evaluation of an interactive knowledge based planning
tes, such as aggregation of attributes and compens,- and decision support system which combines, or allows
ory tzadeoffs through determination of judgmental combination of, several evaluation rules and contin- .

seights. Alternately, it may involve various rules gency structures often used as a basis for evaluation,. .
hich may be quite flawed. Examples of such rules are prioritization, judgment, and choice. We have de-
i) lexicographic ordering, in which the best alter- veloped a knowledge based system to interactively aid
ative on the most important attribute is selected, and planning and decision support processes through en- .
ii) sequential pairwise comperison of alternatives couragement of search for a dominance structure that is
sing a preference relation that is a function of the behaviorally realistic and rational, from both a sub-
.mo alternatives being corpared. In this latte- case, stantive and procedural viewpoint. The support system
Lntransitive preferences may easily result due to the is called ARIADNE for Alternative Ranking Interactive
ýsct that the contextual r-lation used to determine Aid based on DomiNance structural Information Elicita-
,references changes from binary comparison to binary tion. The support system enables use of various inte-
,omparison. grated forms of wholistic, heuristic, and holisti;

reasoning in an aided search for dominance information 0
A variety of holistic, heuristic, and wholistic among identified alternatives. We believe it to be

Judgmental activities will typically be involved in the flexible enough to closely match diverse decision
Beatch for a dominance structire among the alterna- situations and environments in order to support varying
;aves. These take on various forms and mixtures of cognitive skills and decision styles, thereby enabling
formal knowlzdge based, rule based or skill based planners and decision makers tq adapt its use to their

own cognitive skills, decision styles, and knowledge.

Our efforts have concerned choice making situa- \
this research was supported by the Office of Naval tions under certainty and under risk, primarily for the
lesearch under Contract N00014-80-C-052. single decision node case. This formulation allows
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consideration of a variety of imprecisely known param- itized, then bounds on attribute weights, consistent
eters such as: attribute tradeoff weights, outcome with the wholistic priorL.ization, may be determined by .. --.- 4.

state values on lowest level attributes, event outcome using a linear programing approach. Alternately, if
probabilities, and various combinations of these, weights are specified, then it is possible to determine
Parameter needs are determined from the structure of bounds on alternative scores on those attributes subor-
the decision situa tion, as elicited from the decision- dinate ;o the attribute at which prioritization was
maker during the formulation and analysis steps of the made through use of linear programming algorithms.
decision support process. We consider these formula' S
tion and analysis steps to be outside the scope of our As alternatives are identified and prioritized,
present software developsents but recognize the essen- updates on these bounds =rne made available. The re-
tial need for them in a complete decision support sults obtained from using the inverse aiding feature
process. are, in many ways, comparable to those obtained from

the regression analysis based Social Judgement Theory
The decision situation structural model may repre- 181. This approach provides weight identification

sent decisions under r..sk or under certainty. The only, with a "confidence" measurement concerning the - -
attribute tree representing the features of decision vslidity of weights, cardinal preferences are assumed. -
outcome states may be structured and/or parameterized Results in the form of bounds on, or ranges of, weights
in a top-down or bottom-up fashion through use of are available with a very few alternative prioriti-
ARIADNE. A single level structure or a multiple level zations in the inverse aiding approach. The prior-
hier'trchical structure of attributes may be used with itizations needed may involve a mixture of cardinal and
the choice of these being at the discretion of the ordinal preferences. For a large number of prioriti-
decisionmaker. Multiple decision node situations may zations, the inverse aiding approach may become cum-
be approached through a goal directed decision struc- ýbersome computationally compared to the regression
turing approach in which ;;he growth of the structure of based approach, where additional inforu-tion may be -
alternative decisions and event outcomes is guided by easily processed in a sequential fashion.
sensitivity-like computations obtained through use cf
the ARIADNE algorithms 13-51. Combination of inverse and direct aiding to en-

hance decisionmaker specification of imprecise values,
Parameters are elicited from the decisionmaker in -,eights, and probabilities enhances the usefulness of

the form of equalities and inequality bounds. A var- ARZADNE since it allows for judgments and their expla-
lety of mathematical programing approaches and graph nation, using Ia combination of formal knowledge based
theory, have been used to generate interactive displays and skill based modes. This enhanced usefulness will .
of preference digraphs. These mathematical programming also occur through encouragement to the decisionmaker
approaches are used to determine dominance structures to become more aware of relevant alternative courses of'
for alternative prioritization that are based on pars- action and to identify new alternatives on the basis of
meter information elicited from the decisionmaker. At feedback learning of the impacts of alternatives upon .'.
present, only a linear programing approach will yield issues and objectives ir a behaviorally relevant way
necessary and sufficient conditions for determination that, hopefully, encourages "double-loop lelaruing" [9J.
of a priority structure and computational times that __ ,__,
are consistent with interactive decision aiding. This 3. Structure of ARIADNE S
requires that we elicit structural parameter infor-
mation in a slightly restricted form which we denote A complete set of activities envisioned in using
the "behaviorally consistent information set" (BCIE). the single stage, or single decision node' version of
OftAn this BCIS will be in such a form that solution of AP ADNE involves the following set of i activities.
the generally nonlinear programing problems associated
with determination of dominance structures can be Formulation of the Decision Situation
replaced by the solution of simple, computationally ___"_____

amenable linear programs with bounded variables. The 1. Define the problem or issue that requires planning
major simplification associated with eliciting param- and decisionmaking by identification of its ele-
eter imprecision in a prespecified structural format, ments in terms of
however, is in the natural language dialogue needed to
establish a model of the decision aituatioui. (a) Needs, and

The purpose of the grapt- theory algoritnms is to (b) Constraints or bounds on the issue.
enable construction of a domination digraph, or dom-
inance structural model. This digraph is a pictorial 2. Identify a value system with which to evaluate
representation of the ordinal preferences as determined alternative courses of action, and identify oh-
from a dominance reachability matrix. This matrix is jectives or attributes of the outcomes of possible
determined by the linear programming algorithms from decisions or alternative courses of action.
the decision sitLation structural model and parameters
elicited from the dec.sionmaker. These domination 3. Identify possible alternative courses of action,
digraphs encourage either selection of a preferred or option goneration.
alternative, or further iteration using the aggrecated
preference info•-a.aon for fvdbac'. • -,. Ann'-ysis of the Decision Situation

An inverse aiding foaure is currently being Derno me nis"
incorporated into the decision support system f6,71. 1. Determine utcome scenarios.
This feature allows the decisionmaker to make whol-
istic, skill based prio-itizations among alternatives. .2. Identify decision structural model elements, that
These prioritization z may be across some, or all is those elements or factors from the conceptual

identified alternatives, at the top level of the hier- formulation framework which appear pertinent for
archy of attributes or at some intermediate level. If incorporation into a decision situation structural
we elicit numerical bounds on the ettribute scores for model.
those attributes which are subordinate to and included
within the attribute at which alternatives are prior- .- '..".y-,': "*.
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1. Structure decision model elements: step I of the Evnluation and Interpretation
(C). There exists many possibilities for

(a) Structure decision tree, obtaining greater alternative evaluation
specificity such as:

(b) Structure information acquisitian and pro-
ceasing tree--which may be part of the basic (i) setting higher aspiration levels or
decision tree, and aspects,

(c) Structure attribute tree or objectives hier- (ii) moving up the attribute tree by deter- .
archy. mination of a subset of attribute trade-

off weights,
4. Determine ind%-pendence conditions among elements

of the attribute tree and decision alternatives. (iii) "tightening" bounds on attribute trade-
off weights,

5. Identi.y potential for the use of deficient infor-
mation processing heuristics and provide appro- (iv) "tightening" bounds on event outcome
priate debiazing procedures. probabilities, possibly through infor-

mation processing updates,
6. Determine impacts of, or outcomes thay may result

from, alternative course: of action. (v) "tightening bounds" on value or prefer-
ence functions.

7. Enccde uncertainty elements in the form of event
outcome probabilities, or bounds on these, to the 5. If the decisionmaker has provided (partial) whol-
extent possible. istic preferences as part of the analysis effort,

use these with the inverse aiding feati,re of the
8. Identify risk aversion coefficients, if needed, to aid to determine bounds on attribute weights I

the extent possible. implied by these preferences such as to provide
learning feedback t3 decision-aker.

9. Identify preference or value functions, or bounds
on these functions, to the extent possible. 6. Conduct sensitivity analysis. Provide the deci-

sionmaker with an indication of how sensitive the
10. Identify attribute weights, or bounds on these optimal action alternative, or prioritization of

functions, to the extent possible. alternatives, is with respect to changes in values _ -
and information about impacts.

11. Identify wholistic preferences among alternatives
to the extent that this is possible. 7. Evaluate validity and veracity of the approach.

Encourage judfment concerning 'whether the formu-
12. Identify possible disjunctive and conjuctive lation, analysis, and interpretation are sound.

aspects, c. thresholds for attributes, of idea- If not, encourage appropriate. modification to
tified alternative courses of action. structure and parameters associated with the

decision situation, including identification of
Evaluation and Interpretation of the Outcoee of Alter- additional attributes and alternative courses of
native Courses of Action action. Then, iterate back to as appropriate step

and continue.
1. Identify a decision aiding protocol, or plan, for

evaluation and interpretation of the decision In our work to date, we assume that the details of
situation., issue formulation and analysis are accomplished ex-

ternal to the interactive aid itself. There are a
2. Identify potential for use of deficient judgment variety of procedures for accomplishing these tasks. .

heuristics. (101 Our research assumes that there exists an issue
3 formula .ion structure and that the impacts of alterna-

3. Use conjunctive and/or disjunctive scanning to tives are known. These are provided through various i
eliminate very deficient alternattvr" and retain elicitation activities. We do not envision that the
alternatives meeting minimum acceptability cri- ioftware we develop for interactive interpretation,
teris across attributes. including evaluation and prioritixation, will generally

be suitable for use independent of a triined decision - .
4. Determine the maximum amount or domination infor- analyst. Whether software can be evolved to result in

nation possible: an appropriate "staid alone" aid is very dependent
upon the environment and other factors that constitute

(a) Display domination digraph. the contingency task structure for a specific situs-
tion. In situations which are repetitive and environ-

(b) Identify alternative courses of action which ments which are stable, such as in health care or
could not be among the N most preferred equipment fault diagnosis situations for example, it.
alternatives. Normally these. are deleted seems entirely possible to 4esian useful "stand alone"
from further consideration, aids. In most strategic, and in ma..'. tactical situs-

tions there will not be a ataIc underlying structure
(c) If the decisionisaker can sc L ac:. l'rna- that will easily allow this. The-activities involved

tive for implementation by wholistic judg- in issue framing and .he identification of a dominance
ment, or prioritize the remaining *lLersistiv- ;tr-rture appropriate for decisionmaking are often very :. "
set through heuristic elimination, then go to situation dependent. ¶.

step 6 of Evaluation and Interpretation.
There are a number of considerations that influ-

(d) If a choice cannot be made, then assess ence planning and decision support processes. The S
further information about values of impre- person using a decision support -y-tew should be aware . .-
cisely known parameters by iterating through of th"se considerations if best use of the aiding
steps 6-1l of Analysis (B). then re•turn to process Is to be obtained. Generally these considers-
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tions involve the operational environment and the The decisiotmaker must provide the analyst, fol-

familiarity of the decisionmaker with the environment lowing behaviorally realistic elicitation procedures,
and task at hand. It is the interaction of these information regarding:
factors that influence:

(1) alternative scores on lowest level attri-
(1) behavioral characteristics of the decision- butes,

maker,
(2) tradeoff weights,

(2) interaction between decisionmaker and ana-
lyst, %3) probabilities, and

(3) choice of computer-based support for deci- (4) relative risk aversion coefficients
sionmaker analyst interaction

or appropriate ratios or bounds on these quantities
Among the behavioral characteristics of the de- which represent the precision that the decisionimaker

cisionmaker that .influence aiding consideration believes appropriat- or iL capable of providing for the 0
strongly are the facts-that the decisionmaker: given decision situatioL..

(I) is often impatient with time consuming and There ave many computer based support considers-
stressful assessment procedures; tions which evolve from decisiosmaker-analyst interac-

tion considerations. A goal of all decision support "
(2) wants to see some preliminary results prompt- system design efforts is to obtain "friendly software",

ly if these are needed or wanted; software that is friendly both to the decisionmaker and
the analyst. In particular, the analyst must be able

(3) may lack interest in interacting directly to interpret the deciaionmaker's structurai and param-
with complex quantitative procedures for eter information for input tu the computer. To do this ..

decision aiding that do not seem tailored to may require:
the specific contingency task structitre of
the issue at hand; and, as a consequence, (I) redefining the outcome space, such as redefi- " "

nition of attributes to ensure satisfaction
(4) requires a decision siding approach that of independence cansideratione and .

adapts to the decisionmaking style appro- •
priate for the decisionmaker in the given (2) describing parameter information in terms of
contingency task structure. inequalities (or more generally set member-

ship).
There are a number .f considerations that in-

fluence the most desirable interaction between the The analyst must be able to interpret computer
decisionmaker and the analyst. The interaction must be output in a fashion that facilitates the decision-
such that these result: maker's understanding and decisionmaking abilities.

The analyst must be able to assist the decisionmakrr in •
(a) a list of objectives and an objectives hier- responding to the following question which is central

archy; in our interactive knowledge based support system:

(b) a list of alternatives; and . Ha sufficient preference and structural
information been elicited from and provided to the

(c) a list of outcomes for each alternative. decisionmaker for alternative selection, or is
more information required for identification of a

The extent of the need for the use of these identified dominance structure that is relevant and appro- .
lists will vary greatly with the "expertise" of the priate for quality decision support?
decisionmaker. A major task of the analyst in the
formulation and analysis portion of the aiding effort If the decisionmaker feels that in alternative can"
is to assist the decisionmaker in obtaining these be selected for action implementation at any stage in
"lists" in a behaviorally relevant and realistic man- the interactive aiding effort, the analyst must be able
ner. to encourage decisionmaker judgment concerning whether

or not the issue formulation, analyasis, and interpre-
The analyst must also ensure, to the extent pos- tation are sound. If the issue formulati..n, analysis,

sible, that: and/or Interpretation are not pFiceived ab s-mtu by the
decisionmaker, the analyst must be able to encourage .. . .

(1) the above lists are reasonably cciplete; appropriate structural and para•eter value modiiica-
tion, typically by means of sensitivity analysis, in

(2) the lowest level o!jectives are additively order to insure effective, explicable, and valid plann-
independent; ing and decision support. If the dectsionmaker cannot

choose an alternative from among those considered, the
(3) the alternatives are mutually exclusive, and analyst must be capable of eliciting further structural.

and/or parameter information to enhance appropriate
(4) the outcomes that follow from each alterna- selection of alternative courses of action.

tive are mutually exclusive and -xhaustive.
One very important feature of a knowledge based

The nature of the interactive process is such that system for planning and decision support is encourage-
iterative changes can be made in terms of addition or ment to the decisionmaker for generating ncw options,
deletinn of alternatives and attributes. Nevertheless, outcomes, and attributes at essentially any point in
there are significant advantages in attempting to be the aiding effort; and ability to properly evaluate _
reasonably complete at the start of the interpretation these new options. The analyst must be able to cope
portion of the process. with this additional information under the absumption

that:
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(I) Lbh new jntou•matiou is coasistent with pre- deterministic represeitationa of dvctsion situations
viously obtained information; or that make information processing easy and which do not

reflect the complexities and uncertainties that are
(2) the new information is not consistent with associated with the actual situation. A goal of a

previously obtained information due to decision support system is to encourage wide scope
perceptions and associated information processing. The

(a) structural inconsistencies, or process used to assess probabilities, utilities, aid
(b) parameter inconsistencies. weights will doubtlessly affect the quantities that are

elicited. It is possible, for example, that a poor
Thus, the capacity tea resolve potential inconosi- elicitation procedure may, unknowingly or knowingly,

tencies through interaction with the d.-cisionmaker must create rather than measure values 1131. An advantage
exist %ithin the planning and decision support process. to formal support for planning and deciionmsaking
The indirect, or inverse decision siding, feature processes is that it is possible to conduct a search

" should be of particular value to this end. Ir a "poli- for incorsistena judgment and perhaps even detect
cy capture" like fashion, this indirect feat',re will flawed informatiun processing heuristics if process
allow identification of bounds on attribute weights in tracing is used. When inconsistencies are discovered,
terms of wholistic preferences among some, or all, it then becomes possible, at least in principle, to
alternatives. In the direct aiding feature, values, examine the judgment process to determine which judg-
weight-, and probabilities are identified and priori- ments imply flawed information prorfssing, sod/or
tization of alternatives result from this. Combined incoherent or labile values, and/or 4,fivient decision
use of the direct aiding feature with indirect aiding rules. A major tltumate goal, outside the scope of our
should result in much learning feedback concerning present study, is to suggest debiasing and other !or-
relations among the various modes of judgment. Lective procedures to enhance the quality of human

information processing and decision rule selection.
ARIADNE, as we have noted, does not contain soft-

ware to assist in the formulation and analysis portion This mixed scanning based planning and decision
of the planning and decision support effort. It is in support system is based upon rational search for a
these two steps that alternative choices, attributes dominance structure which will enable exposure of some

* and decision impacts or outtomes are elicited or iden- of the processes upon which judgment and choicA is
tified. Our effort is much more concerned with the based. In particular, it enables determination oa the
interpretation part of a decisionmaking effort; that is precise point in a dominance structure search process

S to say how information is prncessed concerning formula- when a decisionasker is able to select a single non-
tion and analysis based quantities such b- probabili- dominated alLernative. We should be able to do this
ties, values, weibhts, ratios, and bounds upon these, without resorting to a complete elicitation of precise
We are concerned also with the way in which this parameter information and prioritization of all alter-
information Is aggregated, by any of a variety of natives. The activity of complete precise determina-
formal 'knowledge, rule based, or skill ba-ved modes of tion of all parameter information is often stressful
cognition that result in judgment and choice. We and time consuming, may require perspectives outside of
recognize the difficulties in separating the tasks the experiential familiarity of the decisionmaker, and
of formulation and analysis from those of interpre- allows few results until conclusion of the aiding
tation. There are difficulties at the systems manage- effort.
ment level since the way in which people cognize a
problem, as part of the contingency task structure of-a The overall process described here appears well
particular situation, determines the way in which they suited to accommdating the fact t0-i neither Indi-
will go about resolving it. Thus the performance viduals nor groups possess static decision styles
objectives, information processing style, ad decision capable of being stereotyped and captured by a rigid,
style that are most appropriate and that are likely to inflexible support process. It .s specifically recod-

be used for a given task, are very much dependent upon nized that an interactive process is needed that is
the task itself. When a particular concrete opera- capable of adaptation to a variety of decision styles
tional or skill based strategy has yielded previous that are contingency task structure dependent. System
satisfactory results, many people will tend to use that design should reflect the realization that is generally
strategy unqestioningly and uncritically in new situa- not possible to define a problem or issue fully until
tions perceived to be similar. This can result in very one knows potectial solutions to the issue. A major

. unsatisfactory judgments and choices in decision situs- cause of this is the fact that information to fully
tions that hlave changed and that are not recognized as define the issue generally becomes available only as
di~fferent from familiar past situationq This may one evaluates potential solutions. Planning and de-
result in premature cecastion of sear~a and evaluation cisionmaking will therefore necessarily be iterative.
"of alternatives prior to identification of quality

*. strategies, e en for famliar situation,. rlhe efforts 4. Behavioral Relevance Issues
can be devast ting in unfamiliar environmen's that are
not so recogni ed till. Oun decision support system design paradigm is

based upon a process model of decisionmaking in which a

The strat gies which a decisionmaker will desire person perceives an issue which may require a change in
to use for Int ractive interpretation will be strongly the existing course of action. On the basis of aS. dependent upon the usy in whitO the task requirements framing of the decision situation, one or more &l-

Sare initially ognized. This will influence the obJec- ternative co.rses of action, in addition to the present
tiwes, attributes, and alternatives genersted in the option which may be continued, are identifier,. A
formulation step and the value scores or impacts asso- preliminary screening of the alternatives, using con-
ciated with them in the analysis step. The input Junctive and disjunctive scanning, may eliminate all
information to the interpretation step is just this but one alternative course of action. Unconflicted
"Information. Adequacy of the interactive interprets- adherence to the present course of action or uncon-
tion step will clearly be dependent upou the "quality" flicted ct~ange to a new option may well be the mets
of the information input to it. sbrategy for judgment and choice that is adopted if the

derisionmaker perceives that the decision situation is
Many recent studies 1121 ave indicated that a familiar one and that the stakes are not so high that

people often construcL selectively perceived simple a more thorough search and deliberation is needed 1III.



A; teiiatel., I i t I' de, is roil ivi 'rirnmeuit is an I. We should allow for top-down or bottoo-up
unfamiliar one, or thre stakes associated with judgment stiucturinp of the attributes of outcomes, or
and choite .are high, a more vigi lant form of informa- imnacts oý decisions. The "tree" or "hier-

* tive at'11-isIt ,On, analysis, and( interp'retation a ro arcf'y" of attributes should be structured to
*calledf for. Th.s desire for more vigilant information the depth believed appropriate by the de-

prece~ssinK lead% to a search for a dominance pattern c is ioruaker.
among alternatives, th- seArch !or noew alternatives

rithat are not dominatedl by Vreseni~ly ilentic il a dI lt,- 2. Rather than force a decision situation struc-
natives, and the eltMinaLiofi from fur hier considleration tural model in the form of a tree, we should
of a I t,'roat y esl Ith, a,' (Itn, miia ij d . IfI [r, N I nigl no,I.i- encourage the decisionmaker to identify a
dominate,] altrnaLisc ~s I oind, adj ustment s to the cok~iitive map of goals, Objectives, needs,
dominance str-icture of altit natives are nade thicugia attributes, alternatives, and impacts that. is
various fo~rms tof cognitive activity fsuch as; attrioute reflective of the way in which. the decisioe-

*-aggregation, addiftiunil infoimation acquisition and maker perceives diagnostic and causal infer-
-analysis, and i'fenti ficaticon of additional attributes ences to occur. At sume later time this

and/or alt,-rnatives. Th ist is tontiniied until the cognitive map may be used to structure a
stro' ijre of oteeds, objectives, at-tribuites, arno Pifer- multinode decision tree which is represen-
na. ,v' action .iptions, and their impacts are such that tative of substantive rationality, but not at

*i'entification of a singli non-dominated alternative all necessarily representative of process
*results. This "single alternative" may well represent rationality.
* a combination. of sutbalternaitives. If there is inisuf-

ficient time and experience tu accomplish these cog- 3. We should en-ourage identification of alter-
nitive activities, hyper-,igilIa'ce gfni'rally resuits native courses of acti',n, additional attni-
The 'ec Isionm~akec is in a situation where tfie presunt butes of decision outcomes, and revision- to
course of act~on is dia.gnosed as unfortunate and there previously obtained eliettations, at any
is .i shorciage of time and experience that might enable point in *the decision support procesis as

* iV tit if icat ion and evalIuat ion of an appropr iate one, awareness of the decision situation andl its

str,,cturT grows through use of thae support
Given, sufficient time and expeurience, vigilant system.

information processing often results from the afere-Fmentioned tasks. Fig..re I presents some salient fea- 4. We should not force a person to quantify
tures of this dominanc,' precess model for search, parameters to the extent that this becomes
discovery. judfgment, and ci.uice. overly stressfo!, or behaviorally and phy-

sically irrelevant in view of the inherent
The mode of judgment and choice that is "proper" uncertainties or imprecisioe that is asso-

depenids upon the decisionmaker's situation diagnosis of ciated with the knowledoge of parameters
Vthe contingency task structure. Here, "proper" dceci- char;-- terizing the 4lcision situation struc-

sion behavior is based upon the assumrptioni that the tural mode' or their assessment.
environment, the task, the experi,'nt' ' familiarity
witt, the taisk, and the eovirot..irnt tb.' c, %

t
j'aL~s the These have two primary implications with respect

cfnt'ngency task StIUCture art "iagnoscd 1 rm il'. If to our interpretation efforts. We allow for revision
th: s is not the case, thei, the strate~its t I.4 dng, to in the elicited structure of the decision situation and
u..si flicted change, adherepce, or vigil.ait information for the idfentification of new options as awareness of

*processing may oe siqnificantly tlawedf. The role of thto decision situation krows. Also, we do not require
t..o rcK.ingency task structure in situAtion diagnosis the 'fecisionmaker to quantify parameters beyond the
,trdni in influeni~ing, at a me'ta ievel or sytems manage'- level felt appropriate for the situation at hand. if

*me-it level, tnie process of judfgment andf ch~oice is, the ifecisionmaker feels comfortable in exercising
tH tofnre, a '.ery important one, precision with re.;pect to factual outcomes, this is

Ther haebe ayraiti aaim fte erf,'ctlv accept,,ble and desirabile. Int parameter
* Thre hve een anyrealsti pardigs ofthe impirecision sho-ld he allowed if we are to have a

process of judfgment and choice'. We brelieve that th- realistic support process.
* domtinance process r'odel described here is not incon-

sistent with the primary feature's and intensions of ARIAIINE allows parameter imprecision in order to
*these 'fescrij'tive models. Our puipose, however, is to satisfy th~is quantification relevancy reequirement, as

dtevelop a conceptual design for a prescriptive approach do .ipproarfies based on fuzzy set theory 1161. We
to judgmsent and .hoice that will aidf in ii'e search for encourage the lecisionmaker to specify precise values
bette,.,ldec isions. We recogni7C that a friuly *ationial ,,r numerical ranges for facts and values. rhios we
app;roiach to prescriptive ('ecisionmaking must tie cog- allo1,w, for example. expressiens for altertativi' (A,'
nilant. of the process of dfecisionmakring as if evolves scotes on attrib~utes Mi in the form 0.2 < v.(A) < C.5

* - ~in a fesciipt ive fastion, that ss to say process ra-- -

* tionality, or it will not 1,,' possibnle to e'volve still- wveiglits associated with attribute i in the form 0.2

staiitivelv iatii,,al support systems. wi 0.4, and probabilities of event (j) ýesulting from

alternative A in the form 0.3 < P.(A) < 3.45. We allow'
It is important t lia t an af'pprollr i.,t e fec 19iso

suipport system he capafble of assist ing tfie dfecision ordfii.a I r,'pres,'ntat ions in the linear floiTnsý -. iA)

make'r through encouragement of fiull irfi~rmat ion acqi-u V (B) < v. (C), 2w.<w<w, P (A) P. (A;' 3P (A),
*sition., minlulling that whi,h maY ufiscuintir, -itoiigly ori siilar foms qjniict i. of kW7"ct

heldf h~l ielS. and 'in the analysis anid iritrp.-etit ion of ri iia om. t'atfct~c fie'etif
this information such as to avoidf a varie'.y of cogni itite form of niumerical bounds on par.t:-e-,- is aluay-.

* ta~fve Itiasvs indh poor nifoim,nition lurori'ssi ig fheuristics leadls to what we call "behaviorally *ouis~tiafur-
*that may 1,-1f to flawed judgment and cioic" 12,121. mat ion sets (BCIS)." Some'times tot..fly cdn!ifnfr-

inaiton may need further quianti ficat ion fit octet to, i'aN!

A c-i'., i der, i,'ision support Ilroc,'ss is nt'ces tfii prec is ion and rigidity of the mathrsi.-' t *r--

R arity itcr itive. Se'veral dfeside'rata follow from this: resp1 iofd to the inutensions of the dee-iti)nasute i 1
ninikirig a purely ordfinal specification. Thlir i% ''
eral ly -not neiefe to obtain solutions buit, rather, to
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obtain parametric mudels that are faithful to the (8) Hammond, K. R., McClelland, G. H., and Mumpower,
understandings of the decisionmaker. For example that J., Human Judgment and Decision Making, PrLeger,
ordinal alternative score inequalities 0 < vI(A) < 1980.

v (B) v (C) I I are 'satisfied by the relations 0 ( r C., Reasoning. Learning, and Action,

vI(A) 1 l-2t, W < vL (8) . 1-t, 2W C vi(C) < I for small Jossey-Basa. 1982.

positive t and W which in the limit become zero. It (10 Sage, A.P,________oareScl _yses

will generally not be the case that the decisionmaker ) Sage, A. P., Hethodolojy for Large Scale Systems,
would express this much imprecision, and would wish to McGraw-Hill Book Co., 1977.

see it more fully quantified to be reflective of (sub-
jective) beliefs. It is, therefore, important that a (11) Janis, I. LJ, and Mann, L., Decision Making, Free
simple and informative display of value scor.s, Press, 1977.

weights, and probabilities be provided to the decision-. (12) Kahneman, D., Slovic, P., and Tversky, A. (eds.),
"maker. This will enhance interactive use of the sup-
port system and will enable learning of the impact of Judd nt Under Uncertainty: Heuristics and Bi-

these parameters, and associsted imprecision, upon ases, Oxford University Press, 1982.

decisions. (13) Fischhoff, B., Slovic, P., and Lichtenstein, S.,

S. Conclusions "Knowing What you Want: Measuring Labile Values,"

in T. S. Wallsten (ed.), Cognlitive Processes in

In this paper, we have examined some underlying Choice and Decision Behavior, Eribaum, 1980.
considerations that have influenced the development of (14) White, C. C. and Sage, A. P., "Second Order Sto-
a decision support system that specifically recognizes chastic Dominance for Aultiple Criteria Evaluation
that imprecise and incomplete knowledge is important to and Decision Support," Proceedingts 191 Interna-
judgment and choice and which allows for its incor- ad Confeeneon y rnetics and iety,
poration in the knowledge base of a decision support tional Conference on Cybernetics and Society5

system. The system allows for judgment and choice at a Atlenta, GA, October 1981, pp. 572-567.

"skill based wholistic level as well as at the formal
reasoning based level at which most decision analysis (15) White, C. C. and Sage, A. P., "Multiple Objective

based paridms operate. For detailed discusaions of the Evaluation and Choicemaking Under Risk with Par-

"algorithmic content of ARIADNE, the reader is referred tial Prefeaence Information," International Jour-

S to 16,7,14-26). nal on Systems Science, Vol. 14, No. 5, 1983, pp.
467-485.
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AN EVALUATION OF ARIAONE

by

Chelsea C. White, 111, Andrew P. S*Re, Shigeru Dozono,
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Department of Swatoes Engineering
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Charlottesville, VA 22901

so

AbSTRACT 4. ARIADNZ requires less time for use th~an does
4 ,. SMART.

this paper.,~ we proseritXAthe objective',

Soperati;;nal dtilIs, results, and conclusions Of an 3. Decisionimakers do not feel that it is necessarv

C evsluatiofl of a decision siding procedure ARIADi4E. The for an aid to produce a $Intl-? best alternative to
results of the evalslatiofl indicate that ARIAOI.E, in Assist the decisionmaker in selecting the most
comparison to a well-known decision aiding Procedure preferred alternative.

called SMART, (1) has a more flexible model of
parameter value description that tends to reduce 6. ARIADNE is more useful than SMART in situations
assessment Stress and makes AT(IADNE more useful in where information precision io poor.
situations where Information precision is poor, (2)
allows earlier presentation of initial alternative Problems typically encountered in the subjects'
ranking information and (3) allows the decisionmaker to operational environment would be more
adjust the mix of alternative canking specificity and appropriately examined Aided by AXIADNE ta ie

parameter value precision. by SMART.

1. wNRiOD1cTxON 8. ARIADNE io no more difficult to understand and use
than SMART.

In this paper, we present the objectivos.
Operational details, results. And conclusions Of an We now discuss the procedures for testing these
evaluation of two decision siding approachas, ARIADNE hypotheses.

and SMART. An indepth description of SMART (Simple,
MultiAttribute Rating Technique) can be founkd in II OPEXATIONAL ASPECTS OF EVALUATION
Edwards (1977). Detailed disrussions and algorithmic
descriptions of ARIADNE ~(A Iternative Ranking Right (8) civilians emploved by the United States

Interactive Aid bated on DomiNance structure Army Foreign Science and Technology Center (FSTC)
information Eli~citation) \are presente~d in the companion participated as subjecl.s in the evaluation. Each of

paper ~ ~ ~ t (Sg*n hte 9:) n Section 11. we list the subj~cts had had extenaive Involvement In technical

the hypotheses that were tesctd during the evaluation. project evaluation in a military environment and thus
The operational aspects of the evaluation are detailed had sufficient experience to appreciate the
In Section 111. We pretenit thu recults of the difficulties end operational issues involving proposal
evaluation, end the~conclusions that we obtain from evaluation. Proposal evaluation was a subject __

these relative to the identified hypotheses, In Section addressed In the more specialized of the two
IV decisionoaking scen~arios examined by tha subjects

* during the evaluation.
11. IDENTIFIED HYPOTHESES:

The two scenarios developed for the evaluation
The -intent of the evaluation-was to, test the -were proposal evaluation and sports car selection. Each

following hypotheses- of these scenarios can be obtained from the authors.
It was Assumed that each scenario involved

I. Use of the more general model of parameter value decisionmakirig under certainty. The first scenario wee
description in ARIADNE tends to reduce stress designed to represent a realistic proposal evaluation
associated with the Assessment of alternative problem that might occur In a DOD funding Agency.
values and attribute weigbts. Although attributes and somse ordinal relations among

attribute weights were specified In the RFP to which
2. Use of the more general model of parameter value the proposals were to respond, information presented in

description in ARIADNE tends to increase the five (5) submitted proposals froms which to deduce
confidence in the final alteriAtive selected, utility scores and hence tradeoff weights was often

vague and/or not available. Also, there was room for
2. The ability to provide, additional parameter judgement in strengthening the ordinal relationa among

Information, in a form and sequence selected by the attribute weights that were provided In the RFP
the decisionmaker, and to observe Its impact on% summarized in the scenario. The sports car selection
aIlerrative ranking in en iterative fashi~on is a scenario was designed to represent a uuch more
desirable feature of ARIADNE. precisely defined alternative selection problem.

Standard procedures were used In order to
iftvestigate and compensate for effects due to
facilitation style and order with respect to decision

*This research has been supported by the Office of aid and scenario.
Noavl Research under contract number W00014-SO-C-OSAZ.
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The chronology for the evaluation was as follows: 53: "Perhaps more stress initially (with ARIADNE)
because I didn't understand the process. But

1. General briefin . A briefing was given to the after using it, I would be inclined to say far

volunteer subjects regarding the purpose of the less stress (with ARIADNE) for complex

evaluation and the characteristics of the two aids. applications."

Individual evaluation sessions were scheduled, and both

scenarios were given to the subjects to read prior to 06: What was the most comfortable way of expressing

the individual sessions. parameter value information fer you? -

2. Individual sessions. Individual evaluation R: Indicated that two subjects (52. 55) preferrpd

sessions were conducted. Each session for each
inivdulsujetexact values, two subjects (SI, SS)., preferred

individual subject involved a subject, facilitator, and interval estimates, and four (S3, S4, S6, S7) .',

computer terminal operator. If ARIADNE was used, preferred ranking statements for expressing

assessed information regarding lowest level attribute parameter value information. There was one

utility scores and tradeoff weights was allowed to be relevant 'comment from S3: 'for the exercise

Imprecise and was translated into linear inequalities today, [exact valuel would be the answer; however,

by the facilitator and/or computer terminal operator. for actual application in complex areas, franking

Initially, only utility score informationrfor the stactsa applican

altrnaive ontheidetifed ttrbuts ws asesed.statements I is my answer." These responsealternatives on the identified attribute* was assessed. cause us to contjecture that if the subjects had
Once this assessment was completed, a domination been more experienced in expressing parameter

digraph on the alternatives was computed and displayed values imprecisely (several had experience in

to the subject. The subject could also view a score expressing value scores and tradeoff weights

sheet of values from which this digraph was obtained.. precisely) then there would have been stronger

If this digraph provided sufficient information for support for this hypthesis.

alternative selection, then this portion of the session pot

was halted. If not, then further ,.tility score and/or

tradeoff weight information was requested and the t is h g m

resulting domination digraph displayed. This parameter value description in ARIADNE tends t
increase confidence in the final alternative selected. -

information could concern attribute scores and weights Relevant Questionnaire questions and responses:

not previously obtained or more precise estimates of-.

previously elicited scores and weights. This iterative 02: I felt more confidence in the final alternatives

procedure continued until the subject halted the chosen when aided by ARIADNE than in the final

process. alternative produced when aided by SMART.

If SMART was used, all parameters were precisely R:

assessed. Then the total linear order on the -5 045

alternatives was displayed. If the subject wished, a 2 7 1 31

post optimal sensitivity analysis was performed on .

whatever single paramvter values were of concern.

Detailed descriptions of facilitation protocols can be -

obtained from the authors. indicating slight support for the hypothesis. There

were no especially relevant written comments.

During the examinations of each scenario, the

computer terminal operator completed an Analyst 08: 1 disagreed. with the action alternative

Information Sheet, detailing various times and types of recommendation. obtained using AAIADNE.

requests. After completing both scenarios, the

subjects were asked to complete a short questionnaire R: (SI,...,S7) "no"; SS "don't remember."

and return it. Copies of both the Analyst Information
Sheet and tne Questionnaire can be obtained from the 014: I disagreed with the action alternative

authors. recommendation obtained using SMART. ' -

IV. RESULTS AND CONCLUSIONS: R: 52 "yes;" (Sl, S3, ... , S7)1 "no;" S6 "don't

remember." Thus, responses to questions the

We now examine each of the hypotheses in the latter 2 indicate no recognizable difference in

context of data collected during the evaluation, the perceived qualitv of the decisions made using

ARIADNE versus those made using SMART. There were

Hypothesis 0 1: Use of the more general model of no relevant comments associated with eith.-r

parameter value description in ARIADNE tends to reduce question.

stress associated with the assess•ent of alternative

values and attribute weights. Relevant Questionnaire Olt: Which approach would you prefer to use to make

,it.istions (0) and responses (M recommendations to others concerning evluatio
and prioritization and why?

cil" Being allowed to expres% par.meter values

imprecisely using ARIADNE produc-1 more stress R: (Sl, S3, S7, SB) "ARIADNE;" (M2, S5. S6) "SMAPr;"

than being required to state a&l parameter values S, "neither." Three relevant comments were made-

precisely using SN.RT. S4: "Depends on Situation. S6! "Since SMART

gives percentages, one can see If two proposals

R" (presenting individual subject scores below the are close and then adjust the rankings by

line; +5(-5) indicates strong (dis)akreement) consideration of factors that were not originally
considered." S7: "By only indicating preference

-. 0 *5 as opposed to exact values is very helpful; weight

1 6 8 7 2 5 S max-min display nice feature."
3

We feel S9's comments tends to explain his response to

indicating a tendency to agree with the hypothesis. this question. The comments of S6 and S7 indicate that

There were two relevant comments: S1 (Subject 0: the max-mmn display (indicating the maximum and minimum

"Txed thý flexibility." values of expected utility for each alternative) --
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incorporated into ARIADNE was likel by S7 and m.' not indicating thet the subjects found moderately

have been requested by S6. We conjecture that ;ad S6 attractive the fnct that SMART always produces a best

seen this display, his response would have been alternative in one iteration.

different.
The responses to 03 and 04 indicate that the

012: Use of ARIADNE encouraged me to carefully weigh decisiormaker should be encourago to be as precise as
the positive and negative consequences of each possible in order to reduce the number of iterations ot

alternative. ARIAONE for final decision selection.

016: Use of SMART encouraged me to carefully weigh the Hypothesis N 4: ARIADNE requir,!s less time for

positive and negative consequences of each use than does SMART. Relevant questtrns and response,:

alternative.
05: Use of SMART lead me to a decision more quicklv

Responses to 012 and Q16 were, respectively: than use of ARZA'INE.

-5 0 5 R--' •:-

6 1 2 3 4 1 -5 05
7 8 6 7 1 2

3 5

indicating that the perceptions of the subjects tend
- 5 not to support the hypothesis.
1 7 2 5

Timing data recorded *n the analyst information
6 sheets support the perceptions of the subjects with
d regard to the average total length of time per session.

Let VET 4 value elicitation time, WET a weight

indicating that ARTADNE and SMART provided ar -licitation time, TST - total session time. Then, the
approximately equal level of encouragement to the timing data (in ..&inutes) are as follows:
subject for him to carefully weigh the positive and
negative consequences of each alternative.

1 2 3 4 -. 2

In summary, questionnaire responses indicate that .
the level of confidence in the output of ARIADNE and APS
SMART appear to be quite similar. Also indicated was
Lhat both aids equally encourage the careful weighing VET 41.75 18.75 19.25 21.25
of the possible consequences of the alternatives. WET 9.5 10.5 6.0 14.0

TST 57.0 41.25 47.25 51.0
Hypothesis f 3. The ability to pý'ovide additicnal

parameter information, in a form and sequence selected CCW "-"___
by the decisionmaker, and to observe its impact on
alternative ranking in an iterative fashion is a VET 29.5 24.25 28.75 z5.0
desirable feature of ARIADNE. Relevant Ouestionnaire WET 11.75 9.75 10.0 11.5
questions and responses: TST 57.5 40.75 47.0 51.25

Q3: Being able to provide additional parameter TOTAL
information and then to observe its impact on
alternative ranking in an iterative fashion, was a VET 35.625 21.5 24.0 23.125 h;-"
desirable feature of ARIADNE. WET 10.625 10.125 8.00 12.75

TST 57.25 41.0 47.125 51.125 ,

-5 n 5 where I - ARIADNE, 2 " SMART, 4 - proposal evaluation,
5 6 2 1 8 3 - sports car selection. Thus, use of ARIADNE

7 3 required on average 40% more total time than did SMART
4 and' the proposal evaluation scenario required on

average 8.5% more time to evaluate than did the sports
indicating strong support for the hypothesis, car selection scenario. Both facilitators on average

required 49.125 minutes per scenario.
As an inoieation of how often the feature of

ARIADNE being evaluated in this hypothesis test was Also recorded on the analyst information sheet was
exercised, the computer terminal operator recorded on the length of time between the beginning of the session
the analyst information sheet the number of iterations and the beginning of the weight elicitation process.
required in constructing the final domination digraph. For ARIADNE, this length of time represents an upper
The number of iterations for each subject was bound on the length of time to the presentation of the
respectively: 3. 3, 0, ., 0, 2, 5. and 3. first digraph. These times for the 8 subjects were:

25, 41, 20, 30, 30, !5. 25, 35 for an average of 27.625
Thus the subjects developed a reasonable level of seconds. We remark tnat SMART required approximately
experience with this feature of ARIADNE, placing a high -8% more time to provide initial alternative ranking"
level of confidence in the responses to 03. information to th! decisionmaker than did ARIADNE. If

we assume that total session times for SMART and the
04: Knowing that a single iteration always produces a lengths of time between the beginning of the session

best alternative is a desirable feature of SMART. and the beginning of the weight elicitation process for

ARIADNE are realizations of normally distributed random
variables with unknown means and unknown variances,

-5 0 5 then a standard statistical test indicates that these
6 1 2 4 5 realizations come from two different random variables

3 6 with a confidence level of greater than 0.95.
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In se...tmary. ART. ONE required less time to provide -~0

Initist alternative selection feedback than did SMART 1 8 3 7 2
bht more time to complete the entire session. a S
Therefore, if the alternative selection situation is 6
such that some alternative ranking information is
better than none, ARIADNE would tend to be the These responses indicate a parceptable preference for
preferred aiding procedure. ARIADNE over SMART in the subjects' operational

environment. S
Hjpothesis 0 5. Decisionmakers do not feel that it

is necessary for an aid to produce a single best There were no relevant comments to 010. Relevant
alternative to assist the decisionmaker in selecting comments to Q13 were: S2: "My operational environment
the most preferred alternative. Relevant Questionnaire does not involve actual decislonmaking with multiple
question and response: criteria. It does involve analysis of the

decisionmakinS of other parties/governments.:" S8:
Q7: It would be necessary for an aid to produce a "Much of the data I deal with are abstract."The

single most preferred alternative before I would response of (and further discussions with) S2 indicate
feel that I could select the best alternative. a need fur an inverse decision aiding procedure that is

not currently operational with ARIADNE. The response
of SS to 010 and 013 indicate that "abstract" appears

-5 0 to be synonymous with "va&ue" end "imprecise.-

1 4 2 8 3 7
1 27We conclude that ARLIADE appears to be somewhat
6 better suited than SMART for the operational

environments of the subjects. We suspect that this is
indicating strong support for the hypothesis. A recent in large part due to the fact that hypothesis # 6 had
evaluation of a decision support system, Aesigned to strong sup;ort.
provide a nondominated set of alternatives to the
decisionmaker rather than a single most preferred Hypothesis 9 8: ARIADNZ is no more difficult to
alterntive.also has ,upported this hypothesis (White understand and use than SMART. Relevant Questionnaire
et al., 1982). Therefore, we conclude with high questions and responses:
confidence that decision situations do exist where the
decisionmaker does not find It necessary for a decision Q11: SMART is easier to use than. is ARIADNE.
aiding procedure to identify a single most preferred
alternative. 015: ARIADNE is easier to understand than ti SMART.

Hypothesis 96. ARIADNE is more useful than SMART Responses to 011 and 015 were. respectively:
in situations where information precision is poor.
Relevant Questionnaire questions and response: -, 0

1 6 5 7 2 4 3

09: ARIADNE is more useful than SMART in situations -4 O
when information precision is poor. 3 2 1 7

4 8 5
R:

-0 0 These responses indicate that SMART is both simpler to
2 6 1 use and easier to understand than AIZADNE and therefore
5 7 3 contradict the validity of the hypothests.

a Relevant comments to Oil rere: S6: "Since one has
to be specific in SMART, it is harder to feel

indicating strong support for the hypothesis. There comfortable with the exactness of the results." S8:
was one relevant comment: :8: "Very much agree that "ARIADNE does require some knowledge of computers and
ARIADNE aids one with imprecise data." the manipulation of dat& on them; or at least one that

cat% operate a computer." The S6 response appears to
Hypothesis 0 7. Problems typically encountered in suoport hypothesis 9 2. •

the subject's operational environment would be more s h #

appropriately examined aided be ARIADNE than aided by The relevant comment to Q15 was: $6: "Since an
SMART. Relevant Ouestionnaire questions and responses: "interpreter" was used, most interfacing problems were

eliminated."
010: Typical problems encountered in mv operational

environment would not be appropriately examined by The above data Indicate that the evaluation results
Sl•ART. contradict the veracity of this hypothesis. However,

013: Typical problems encountered In ey operational there are two factors which contribute to this
contradiction that could possibly be eliminated orenvironment would not be appropriately examined bv mollified. First, many of the subjects had had

ARIADNE.
previous experience with SMART-like scoring and

Responses to 010 and 013 were, respectively: weighting assessment procedures, and none had had any
experience with ARIADNE. Second, current facilitation

-5 0 5 procedures for ARIADNE are more complicated and lessS. .. 6 4.....established tian those for SMART. We conjecture that;
7 3 1. a sufficient amount of famillarlty with the more •

genesral model of parameter value incorporated intoARIADNE and 2. the completion of trulv established

facilitation procedures for ARtADNE (as exist for *
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SMART)would cause ARXADNE to be perceived by the user A. White, C.C., Wilson, Z.C., and Weaver. A.",

as no more difficult to understand and use than SMART. "Decision All Development for Use in Ambulatory

Training time to achieve such a level of familiarity is Health Care Settings," Ooerations Rcsearch, 'ol.

likely to be longer for ARIADNE than for SMART due to 30, 1982, pp. 446-463.

the relative Increased flexibility inherent in ARIADNE.
S. Sale, A. P., and White, C. C., "ARIADNE: A

other Issues and associated questions: Knowledge based Interactive System for Planning

and Decision Support," IEEE Transactions on

018: Was the posterior sensitivity analysis associated Systems. Man a..d Cybernetics, Vol. l1, No. 1,

with SMART helpful? Jenuary/Pubruerv 1964.

019- Which decision making scenario was the most 6. Sage, A. P., "A Methodological Framework for

appropriate for ARIADHE and why? Systemic Design and Evaluation of Planning and

0, Which decision makinS scenario vws the most Decision Support Systems," Computers "and

appropriate for SMART and why? Electrical Engineering, Vol. 8, No. 2, june 1981, -

pp. 87-102.
Responses to 018, Q19, and 020 indicated, respectively,
that: 1. the post-optimality sensitivity analysis

feature oas useful in SMART, 2. the proposal evaluation .
scenario was aost appropriately evaluated using

ARIADNE, and 3. the sportI car selection scenario was
most appropriately evaluated using SMART. Generally,

comments to questions 0 19 and 0 20 indicated that for

complex decision selection situations having less .
quantitative information available, ARIADNE would be
preferred to SMART, which provides further support for

hypothesis 0 6.

Summary, our evaluation lends credence to the

following claims:

1. The more flexible model of parameter value

description employed by ARIADNE tends to reduce
assessment stress and makes ARIADNE more useful
than SMART in situations where information
precision is poor.

2. The iterative, progressive information
requirements associated with ARIADNE is a
desirable feature that allows earlier presentation 5
of initial alternative ranking information than
does SMART.

3. SMART requires less total time for use than does
ARIADNE.

4. geing able to adjust the mix of alternative -

ranking specificity and parameter value precision 0
is a desirable feature of ARIADNE.

5. ARIADNE may require mote training than would be

required by SMART for successful use.

6. The level of confidence in the output of ARIADNE

and SMART Appear to be quite similar. 5
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RESEARCH ON COGNITIVE COLLABORATION BETWEEN PERSONS AND COMPUTERS

30o
Marvin S. Cohen %

Decision Science Consortium, Inc.
7700 Leesburg Pike, Suite 421
Falls Church, Virginia 22043

Abstract allocating cognitive effort. By imposing a rigid strut-
ture on person-machine interaction (however "optimal" %

The introduction of decision aids and knowledge- it may be from the point of view of relative expertise),
based expert systems incurs resistance when non-congen- the net outcome may be less effective problam-solving-
i al styles of problem solving are imposed on users. On- including perhaps a failure to use the system altogether.
going research addresses the design of computer-based
display and analysis systems which cater flexibly to To deal with these conflicting objectives, our re-
personal styles while providing non-obtrusive safe- search has focused on three broad capabilities in cog-
guards against potential errors and biases. Capabili- nitive system design: .
ties which permit monitoring of the user's task by the
computer and of the computer by the user have been ex- e flexible blending of computer ad human contri-
plored. butions, under the personal control of the user;

The Problem e monitoring by the computer of selected human-
performed tasks; and

High-level users of computer-based information .-- a.
systems typically find that either too little or too a monitoring by the human of selected computer-
much help is offered.(1J[2J On the one hand, sophisti- performed tasks..
cated systems are available for data retrieval, analy-
sis, and display, yet they provide little guidance in The first principle maximizes the tailoring of person- .
selecting the information that ought to be retrieved or computer interaction to the particular style of a user.
the type of analysis which the user ought to apply. On The second and third principles provide a prescriptive-.
the ot!.er hand, decision aids and knowledge-based ex- counterbalance: they are designed to compensate for
pert systems typically impose an analytical structure deviations from optimality that may emerge from the
and mode of interaction which may prove inappropriate first principle, and to do so in the most non-obtrusive
or uncongenial to the user's own preferred style of way possible.
problem solving. Users, in short, are caughL between
system- that automate routine functions and systems In the following sections, as briefly su-marize . . -

which cannot help but dominate any dialogue with the some of the research we have done under these three
decision maker. headings. The focus is oa the psychological underpin-

nings and implications of the wrk. rather than on the
It might be thought that as computer-based systems details of the decision aids that have been developed.

more completely automate intellectual tasks, the issue This work has been supported by the Engineering Psycho- .
of user preferences will become moot. Yet the most logy Group of the Office of Naval Research under two
critical characteristic of these new applications is on-going contracts.*
that they are neither fully objective nor demonstrably
optimal. Knowledge-based expert systems incorporate Aids for Personalized Decision Making
the assumptions and modes of reasoning employed by hu-
man specialists. Decision-analytic aids provide logical Under the Defense Department's Small-Businesz Ad-
constraints for inputs from human experts or decision vanced Technology (DISAT) program, DSC has explored
makerr regarding subjective probabilities, preferences, the design of a computer-based display and analysia s
and problem structure. Both kinds of systems are appro- system which is customized to the personal cognitive
priately regarded only as fallible advisors. Complete styles of users.[3] The design process has drawn on
automation could be inappropriate if users possess sub- relevant work in the cognitive psychology of judgment
stantive expertise or analytic insights not incorporated and choice, in computer science, and in the prescrip-
in the computer. tive theory of decision making. A prototype system,

developed for attack submarine antisubmarine warfare
What is required, both to encourage user acceptance (ASW), is based in part on our own study of individual

and to enhance aid performance, is a repertoire of tech- differences in decision-making styles among submarine ,
niques for blending the expertise of the user and com- officers.
puter. Such techniques must be fine-grained and flexi-
ble enough to capture shifting availabilities of human The Decision Setting and the Decision Process
and computer resources, relative levels of expertise,
sod user preferences. The dilemmas faced by the command staff of a hunt-

er-killer submarine in approaching and attacking an (as
Unfortunately, in the design of systems that foster yet) unalerted hostile submarine are characteristic of "

cognitive collaboration, two basic objectives tend to situations involving stealth"in warfare: How long
conflict: On the one hand, we want to exploit user in- should I attempt to remain undetected and to improve my
puts where (and only where) they can enhance the over- position, before I tip my hand by launching a weapon?
all credibility of aid outputs. On the other hand, In planning an attack, the Commander faces a number of
users have their own preferences and styles of problem choices (among weapons, targets, approach maneuvers,
solving thit may not correspond to optimal patterns of and times of fire) and is flooded with an increasingly
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,nmanageable quantity of data (about the target, own such rule, Elimination-by-Aspects [17], all options fal- -
hip, and environment). To capitalize on the element of ling below a cutoff on an attribute-are eliminated, and . . "
;urprise. a price must be paid in the quality of the attributes are considered in turn until only one option ,
laet, the complexity of options, and the strenuousness remains. In "satisficing" [16](19], the decision maker
if the choice process. In -11 of these areas, there is considers a sequence of options but stops as soon as
;ubstantial leeway for differpnces in individual cogni- he finds one that clears a cutoff or set of cutoffs on
:ive styles of coping, selected attributes. In each of these examples, an

option might be eliminated even though it scores very
Situation Assessment. Assessment tasks must de- high on some dimensions. In the submarine context,

end almost exclusively on passive sensors (which do such rules exclude a balancing of tradeoffs - such as
ot alert the enemy); as a result, data are often frag- acceptiag a small risk of detection in order to accomp-
.entary, noisy, and irLonsistent. Little or no guid- lish a mission cbjective. Satisficing can ccuse super-
nce is provided in reconciling multiple conflicting ior options (e.g., a latcr time of fire) to be over-

lstimates of the same variable (e.g., target range), looked.
,rganizing data acquisition, assessing the quality of
;stimates, or drawing inferences about critical oppor- It has been suggested that experts differ from
* unitles and dangers (e.g., probability of kill, pro- novices in their capability to individually recognize .
,ability of counterdetEction). a very large number of different problem situations.

[201 Klein [fi] argues that experts tend to reason
Work in cognitive psychology suggests a number of holistically, by analogy with previous similar exper-

ways in which people may simplify the cognitive demands iences, rather than by analysis and computation. To ".
of these tasks at the risk of suboptimal performance, the extend that this is true, we might expect that for
Where multiple estimates are available for a single var- experienced commanders all stages of decision making-.
iable (e.g., target range), people tend to ignore evi- situation assessment, option generation, and clioice- r
dence that contradicts a favored, or earlier, datum and would be considerably streamlined. At the least, we
to double count redundant evidence.[4] Patterns of would expect decision makers to differ in the degree to
informaticn search tend to avoid stringent tests of which they arrive at highly integrative conclusions
favored hypotheses.[5][6](7] Assessments of degree of without the necessity of a large number of explicit
certainty tend to be overconfident.[SJ When inference intervening steps.
proceeds in stages (e.g., deriving probability of kill .- -..
from information about range, which is derived from Individual Differences in Decision-Making Style .
bearings data), people often act as if conclusions at
earlier Stages were known to be true, rather than merely Early in the design process of the prototype aid, 0
inferrod.[91 Similarly, the probability of a detailed date regarding individual patterns in the use of infor-
scenario is often judged higher than the probabilities mation was gathered in a procedure involving four form-
for component eveats.[10] er submarine command personnel. They received a ques-

tionnaire describing a realistic multiple threat ASW
Option Generation. Interdependent elements of a approach and attack scenario. The questions were de-

tactic should be considereJ together: for example, use signed, to focus not only on observable patterns of in-
of certain types of weapons may be precluded by the formation use, but also on the less conspicuous deci-
risk of counterdetection by a third party threat, unless sion-making processes within which that information
appropriate maneuvers, firing position, and time of fire plays Ia role. At each of a number of break points in
are selected. The consequences of inmediate decisions the scenarios, the officers were asked to specify: the
for later choices may also be critical - e.g., the information currently available on board the submarine
ability to proceed against or evade a second threat which they would seek, the source from which they would
after the initial attack, or the ability to respond if seek it. the combat decisions that depended on the
unexpectedly counterdetected, information, the way the information would affect thosedecisions, and the objectives of the decision. •.••,

Research suggests that the process of formulating d i a th
options is often truncated in a variety of ways. People Analysis of this data suggested that there were
prefer to treat the elements of complex options as if important differences in styles of data gathering, op-

they were independent choices. There is a tendency to tion formulation. and choice to which an aid might . .:.- .

formulate options that span only a short time-frame, cater.'
and to overlook, as a result, the cumulative risk of
pursuing a gien course of action over a long period of Situation Assessment (A): Amount of Information.
time.[I11 Individuals differ in the degree to which The total number of items ucilized varied considerably,
future acts are considered lit current planning •[12] and from 42 information requests by one oificer to 18 by
in the sheer number of options they ccnsider.(13] Cus- another.
tomary ways of viewing a problem tend to hinder the
*generation of novel and creative solutions.(141 Situation Assessment (M: Information Search

Pattern. Requests for data fell into two quite dis-
Choice. The aim of avoiding counterdetection fre- tinct patterns. Two of the officers tended to organize

quently clashes with other goals. A premature attack data acquisition by source, asking for a "dump" of cur- loll**
may both alert the enemy and miss, yet continued ap- rent estimates from sonar, plot, or fire control, then
proach increases the risk that own ship will be detected going on to another source. The other two officers
before attack or that the target will successfully organized data acquisition by item, asking fo. a given
evade. Perhaps because the information load tends to estimate, like target range, from a variety of sources
be large, simple heuristic decision roles are often or else selectively requesting different items from
invoked: e.g., for time-of-fire, "avoid counterdetec- different sources.
tion"; or "fire as soon as within maximum weapon range %

and in possession of a range solution." Option Generation: Time-Span. The officers dif-
fered in the time horizLn of the options they consider-

There is a growing literature it cognitive psycho- ed, e.g., focusing exclusively on the immediate actions
logy suggesting that rules like these may be adopted to required t.1 regain a lost contact versus evaluating in
reduce the cognitive effort that would be involved in a advance approach tactics contingent upon recovery of " "
thorough consideration of each optlon.[15][16] With one the contact..

p.,'.. . .
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Choice (A): Level of Integration. There were dif- The display area of the Planning Module (Figure 2)
ferences among officers and for all individual officers is divided into a set of windows which permit simultan-
across situations in the scope of the objectives which eous viewing of substantive results (evaliations of
they brought to bear on the evaluation of options. Ob- alternative tact.cs) and a variety of menus by means
jectives might be specified quite broadly as preserving of which the user can specify the tactics to be evalu-
own ship, ox more narrowly as avoiding counterdetection ated, the criteria to be employed in the evaluation,
or watching for clues regarding counterdetection status, and souices of validation for displayed results. A -..
Similarly, the goal might be killing the target, achiev- final menu enables the user to select other specialized 0
Ing a suitable firing position, or opening torpedo tube modules (Select, Adjust, Alert, Advisory). The Plan-
doors. ning Module facilitates a variety of personal prefer-

ences in the approach to situation assessment. fcrmu-
Choice (B): Number of Evaluative Dimensions. One lation of options, and choice.

officer combined concerns for own ship survival and kil- 1  .

ling the target in all decisions (each concern migh: be ADJUST . 'I i'1
at various levels of integration). Two of the officers I ALERT r iP 37 Eappeared to shift back and forth in their focus between SEETO .. ..

these concerns. The fourth officer went all out for ADVISORY
target kill, never once explicitly mentioning an objec- L
tive related to own ship survival (at any level of inte- _-__ _-

gration). CNTRDETECTION I 80...'

Choice (QC): Use of Cutoff Criteria. Three of the FRSTSHOT KILL so

four officers evaluated actions explicitly in terms of 75 ........
cutoffs. All three used the achievement of maximum wea- LOC/MOT .
pon range as a criterion for attack; one used arrival at TGT VALUES 68
counterdetection range as a criterion for withdrawal. KILL 6

THERMAL 50
A Prototype Personalized System

A prototype personalized aid has been designed and "4.".5-

partially implemented for approach and attack planning
by the command staff of a nuclear attack submarine. ,
However, only the data base of the aid is affected by O/S WEAPON
the nature of the specific application. Its functional TGT LOC/MOT
logic, and the methods used to achieve both personaliza- TGT CLSFN
tion and prescriptive impact, are quite general. The TGT SENSORS 45 65 80
implementation of a desmonstratior. prototype system in a TGT MANEUVER A 3 C
specific context, however, permits a realistic test of,_."-'_..
the feasibility of the concepts, with potential users.

Figure 1 outlines the general logic of the cogni- Figure 2. Planning Module Display
tive interface. The prototype aid design consists of a
data base, a flexible general-purpose Planning Module, Situation Assessment. The data base consists of
and faur relatively specialized routines for customiz- basic inputs (in the submarine testbed these concern
ing the aid. The system utilizes principles of spatial own ship, contacts, and the environment) together with
data management which combine an undemanding style of a set of prescriptive models which aggregate those in-
interaction with a high degree of user control over dis- puts into higb-level inferences and forecasts of criti-
play contents. All user inputs are via a single simple cal events (e.g., counterdetection and first-shot kill) .. -

locator device (a joystick plus button) with control and evaluaticns in terms of ultimate combat objectives.
properties that shift appropriately with the display re- The Planning Module enables users to sample information
gion where the cursor is located, at any preferred level of aggregation in the data base.

SELECTION When higher-level inferences are displayed, the Plan-

(Prioritize ning Module clearly distinguishes conclusions from
evidence, and indicates the sources from which each

information) inference is derived. The user may elect to examine

in more detail any of the evidence utilized in deriv-
ing a particular conclusion. -

/ 'ADJUST ' [••--'
(s de The Selection Module allows the user to view a map

PLANNING ,alues)vi DATA BASE of the total data base and to personally select the
(Display tc- v (Store basicE portion which will be ismmediately accessible throigh

tion alterna- inputs, fore- the Planning Module.
tives, inputs, U casts, eval- The Adjust Module enables the user to insert sub-
|forecasts, jc- jective judgments in plice of default values at anyieval•;ations, (Set thresholds ,_a tion alter- ••"•ev tidnc) (on seet thresholds n t atier- level in the data base. The Planning Module will then

factors) display the implications of the hypottetical or revised
values for any higher-level inference. (Default values,

however, continue to be stored and displayed.) The Ad-
just Module thus accommodates individual differences

ADVISORY ,in beliefs and preferences and - from a prescriptive
(Set tolerance point of view - adcs a potentially valuable source of •

for dtsconflrminc information (the user) to the data base. We return to
infor atisconfrmil /this feature in the last section.
i mation)

The Alert Module performs situation monitoring for
7

4
oure 1. Structure of Prototype Aid the user. It enables him to set a cutoff or threshold
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for any variable in the data base (at any level of aggre- These distinctions have implications for the appro-
gation) when cutoffs are crossed. priateness of prescriptive advice in a personalized de-

cision aid. In the second case discussed above, the
Option Generation. The Planning Module facilitates user usually ooes best with the strategy which he pre-

the formulation and evaluation of complete tactical op- fers; accordirgly.,a interactive system should simply
tions (weapons, targets, approach maneuvers, and times facilitate selection by the user of the information pro-
of fire). It enables the user to vary the number of ceasing rule or structure to be employed.
alternatives examined and the time into the future over S
which an option extends. A version of the aid curreutly In the first case, the computer's role may, at the
under development gives the user a choice between enter- request of the user, be somewhat more active. It in- " .

ing his own options directly for evaluation or specify- volves an apparent conflict between the user-preferred
Ing personalized parameters to constrain automatic op- and the normative strategy - though the use of the
tion generation. former may in fact be well justified by savings in time

and effort. In such cases, the computer can assist by
Choice. In the Planning Module, the user can applying a prescriptive model to the problem. in para-

evaluate options by reference to objectives at any of llel with the user's own effort which it monitors. The
a variety of levels of integrative scope (e.g., hou aid may then advise the user when discrepancies seem
quickly will the option get me to point x? How will it significant. The nrescriptive model applied by the
help improve probability of kill? What is its overall aid, of course, has no automatic claim to truth; it
merit, combining probability of kill and probahility of takes the role, rather, of a "cooperative adversary" or
own ship survival?). "devil's advocate." It enables the user to concentrate

his own attention selectively, in areas that he rebards
The Alert Module facilitates individual heuristic as critical, while notifying him when other issues seem

strategies (such as Elimination-by-Aspects and satis- worthy of attention. Advisory prompts thus complement
ficing) which evaluate actions by reference to cutoffs the freedom of individual choice granted by personaliz-
as opposed to tradeoffs. After the user sets a thresh- ing features; they encourage flexibility by offering
old on a variable, the Planning Module forecasts whether some insurance against possible pitfalls.
or not the threshold is expected to be crossed for any
action alternative which he wishes to e~aluate, and if Two important features of advisory prompts as we
so, when. Different heuristic strategies for choice seen them are worth stressing:
imply differences in the way information is searched:
e.g., by action (run through all relevant evaluative * The objective is not sitoly to alert the user S
variables for a given tactic, as in prescriptive theory whenever there is some differen'e. however
or satisficing) or by criterion (examine all options for small, between his judgment and the output of a
a given evaluative variable, as in Elimination-by- prescriptive model. The difference must be
Aspects). In the Planning Module both of these search large enough to matter, in the actions to be
modes are specifically facilitated. selected and in their expected outcomes.(22)

Prescriptive PromptIns e The user himself determines the size of the dis- -
crepancy that would justify a prescriptive -

An important factor in designing a personalized pronpt. The frequency of prompting will thus
and prescriptive aid is the impact of individual pre- depend on his own informal assessment of the
ferences on outcomes. Simplifyiag for illustrative value of his time and effort relative to the
purposes, alternative strategies for performing the cost of errors. The Adjust Module of the per-
same task may fall into one of two classes in this sonalized aid enables the user to input that
respect: judgment.

Strategy A is generally expected to be more Prompts may be introduced to assist users in tasks 0
accurate or yield more preferred outcomes than of situation assessment, option generation, and choice.
strategy B, but requires more training, more Our current research involves the conceptual design,
time, and/or draws away more attention from implementation, and testing of a variety of such .-

other tasks. prompts.

An example, in the area of choice, might be evaluating Situation Assessment. The user might be notified
each option by reference to all the relevant dimensions when two informatien sources, both of which are regard-
(A) versus eliminating some options by reference to ed as credible, have contradicted one another. He •
only a few (B). (Or, in inference tasks, ignoring might then choose to implement prescriptive procedures .
important sources of uncertainty.) In these cases, for appropriately readjusting one or both credibility " "
differences among people in preference between, A and assessments downward. A prescriptive prompt might
B migiht reflect differences in their underlying ability notify him on future occasions when either of the
to perform A. in their training or knowledge, in their (partially) discredited sources is involved in an in-
handling of workload, degree of motivation, or their portant conclusion.
evaluation of the cost of errors.

Advisory prompts might signal when favored infor-
a For some people, strategy A is expected to be mation search patterns seem inefficient, e.g., seeking

more effective (better in accuracy, payoffs, additional confirming evidence for an already well-
speed, effort, etc.) than strategy B, while supported hypothesis.
for other people, strategy B is more effective
than A. Prescriptive prompts might warn usecs. when they

estimate or subjectively adjust higher-level inferred
Payne 115] speculates that search organized by options variables, that a number of stages of uncertainty m.at
versus search organized by attributes may reflect indi- be kept in mind. The same type of caution might be 9
vidual differences in the way knowledge is internally appropriate when the likelihood of a compound, or con-
represented. People who differ in their degree of ex- junctive, event is being assessed.
perience or areas of expertise may prefer and benefit
from different ways of structuring a probl-em-. Option Generation. W-ort range planning might be
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more appropriate in some situations (e.g., where feed- staff in balancing and integrating the diverse sets of
back is continuous and mistakes can be easily and quick- relevant information. The aid displwis evidence (i.e.,
ly corrected), while long range planning would be more particular ranging techniques with assessments of their
suitable in others (e.g., where a risk appears small un- quality) as well as ccnclusions (a single best guess as
less it is considered cumulatively over the long run). to target range together with an interval of uncertain-
Prompts might recommend that the user consider a shift ty). This aid has been implemented for testing pur-
in time horizon under appropriate circumstances, poses 4t the Naval Underwater Systems Center (NUSC-

Newport).
A variety of prompts might be utilized to stimulate"creativity," or th. generatior. of novel options. The For present purposes, two critical features of

system might encourage the user to adopt, hypothetical- the aid should be noted:
ly, a new "schema" of the situation by questioning his
basic assumptions about the threat, own ship, and envi- a It can operate in a completely automatic mo'.
ronment - especially where the system data base actually I
has information that deviates from "normal" conditions. Default estimates of pooling parameters, i.e., weights
Altern.atively, the system might encourage the user to describing the precision of the solutions and their

better delineate the space of options by generating op- correlations, are based on at-sea exercise data. Ulti-
tions tailored to single objectives, especially objec- mately, default parameters will be contingent on a I
tives not so far considered by the user. variety of environmental and threat characteristics.

Choice. Advisory prompts might signal a user who a The user can interpose his own issessments in
is employixig cutoffs when tradeoffa bear looking into; addition to or in place of default estimates
in particular, where tradeoffs involve evaluative dimen- at any point in the range pooling process.
sions he has not as yet examined. hore generally, the
Planning Module might monitor the user's selection of Preliminary Testing of Interactive Modes
information and specification of options, and derive
hypothesea regarding the user's decisici process and The pooling aid has been tested an three modes:
conclusions. The user would be advised when inforyra-
tion about tactical options which he has not requested (1) totally automatic (default weights),
may have imp'ications for choice that clash with the
system-inferred user model. (2) totally subjective (weights supplied by - -'5

user), and ,
User Override

(3) user override (default pooled solutions
In a personalized decision aid, ultimate control adjusted by user).

over task assignments belongs to the user. We have
just seen how this flexibility might be counterbalanced Prerecorded data from at-sea exercises were used to-
by the aX.'s capability to monitor the user. In a com- sim.ulate conditions (2) and (3). Recorded command staff
plementary fashion, the user might quite gladly hand estimates ("system solutions") were used to derive sub-
over certain tasks to the aid. retaining, however, the jective weights by multiple regression of command staff
capability of monitoring its performance and interject- estimates on the particular ranging techniques. Com-
ing his own judgments w,,ere he deems it appropriate. mand staff adjustment of default pooled solutions was

simulated by pooling command etaff estimates and de-
In a second project for ONt, DSC as developed fault pooled estimates.

decision aids w 1ch can ifrorporite both objective data
and subjective j'idgment.123][24](25] A special focus Figure 3 summarizes the results of this test for
of this work has been the analysiL of passive sonar data two different samples of Rangex data:
to estinate the range of a target on a nuclear attack
submarine. This task, logically, should be included Parameter-estimation sample
within the situation assessment feature of the attack
planning aiu described in previous sections. In par- Cross-validation sample
ticular, work on this aid has shed some light on how
the Adjust Module might be utilized to facilitate user
inputs into an otherwise automatic przcess.

Problem Settin7 2.0 •

Numerous techniques are available for estimating1.46 Pooling
target range - based on different aspects of the data .en "with

(e.g., bearing, intensity, angle between direct and Absolute 1.0 default

reflected sound paths) an,
4 using different analytical Error eight

tools and assumptions. Typically, since their sources
of error are both pronounced and different, they 'ro-
duce quite diverse estimates. Confronted with a diver- 0

gent set of estimates, the commander is likely either Command Pooling Adjusted
to suspend judgment about range altogett'er or to focus staff with default
on only one or two favored techniques, at the expense estimate subjective pooled
of others that might eithier corroborate or contradict weights solution
them. Attack may be needlessly delayed while a good
solution is improved, or be launched prematurely based
on overconfidence in a bad one. Sample 50#,57# 50#.55#

Size 78*"95*

Pooling ,-id Figure 3. Ratio of Mean Absolute Error (MAE) for Var-
ious Interaction Modes to MAE for Default Pooled

A range pooling decision aid has been developed, Solution. # - Rangex 1-78 data; * - Rangex 1-78 and
utilizing a Bayesian framework to assist the ccmmand 1-79 data -
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Subjective Pooling. Pooling with subjective Note
weights was superfo: in accuracy both to the command
staff estimati and to the specific ranging techniques. * The work described was supported by the Office of
Although command staff estimates were superior to par- Naval Research, Engineering Psychology Group, under'Con-
ticular ranging techniques, the superiority of pooling tract Numbers N00014-82-C-0138 (technical monitor J.
with command staff weights to the command staff itself O'Hare) and N00014-80-C-0046 (technical monitors M.A.

.suggests that t0e information actually available to Tolcott and G.S. Malecki), with the collaboration of the
the command staff was not being optimally utilized by Naval Underwater System's Center (Code 35). R.C. Bromage,
them.[26] These resulLs wo-ld occur, for example, if R.V. Brown, J.O. Chinnis, L. Merchant-Geu'er, J.W. Payne,
the command staff were probabilistically seleccing and R. Parisnau have contributed in a variety of ways
among estimates, with probabilities dependent -i their to this effort.
relative accuracy, rather than pooling.
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quantitative accuracy of aid outputs. Laird (Eds.). Thinking and reasoninf. 1981. 7, 242-248.
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COORDINATION OF BATTLE GROUP WARFARE COMMANDERS
THROUGH SUMMARY DISPLAY TRANSFERS

Conrad J. Grant

"The Johns Hopkins University Applied Physics Laboratory
"Johns Hopkins Road

Laurel, Maryland 20707

Abstract test of advanced display and decision aid capabilities for the AEGIS
Display System (ADS) to support the AAWC aboard the new AEGIS

tha There are three primary methods for timely information transfer Class 'ruiser (CG-47). The displays of BADG and ADS comprise four
"that are employed in the Fleet today. These consist of digital data Large Screen Displays for graphic presentation of track data, ten CRT

transfer (such as Link 11), record message traff.c (such aq Fleet Satel- monitors configured as Automatic Status Boards for display of sum-
lite Broadcast or NAVMACS), and voice communications. With the mary alphanumeric information, and multiple other special purpose
advent of command facilities with advanced display and processing displays. Once initiated, all displays can be automatically updated
capabilities, there evolves a fourth method for information transfer: from the data base by the BADG processors.

-* command summary display. The summary display can be composed
of graphic information (such as Large Screen Displays) or alphanu- In a parallel effort, the Navy Ocean Systems Center (NOSC) is
,ctic information (such as the Automatic Status Boards). It has been developing the Tactical Flag Command Center (TFCC) and associated
determined that in many situations, the Composite Warfare Coin- equipment to support the Battle Group OTC and CWC aboard Naval
mander (CWC) for the Battle Group requires the same summary dis- aircraft carriers and other selected combatants.
play information that a subordinate warfare commander has at his
"disposal in another command facility. Having similar information dis- With continued development of these systems it has been recog-
"playr-d at both sites enhances cooedination between the commanders, nized that there is an imperative need to determine interoperability
and transferring this information in the form of summary displays can requirements for the ADS and TFCC in order to fully meet their
"greatly reduce the need for replication of special purpose processing respective Commander's requirements for coordination and exchange
and data bases. While the transfer of summary displays can greatly of information. Effort was initiated at JHU/APL to propose a set of
enhance the coordination between commanders, it also places a heavy ADS/TFCC interface guidelines[2I that discussed the factors that
burden on link communications. Therefore, it is imperative that only affect the interoperability of these two systems, the types of informa-
essential information be transferred and that compression and abbre- tion that should be transfern.d to meet AAWC and OTC/CWC coin-
viated representation techniques be used in the transfer of the display mand and coordination requirements,1 31 and the communications,
information, processing, and display systems that will be available to perform such,

> Th"s ." "an information transfer.
" j This paper will 6imi on the transfer of command summary dis-

plays between command facilities to enhance warfare commander CWC Concept Premise
coordination and the requirements that these display tmrsfers place
on the display, decision, and communications systems that ame The development of interoperability requirements between afloat
involved. - command facilities is dependent on the extent to which the CWC con-

¶--• -..... cept will be employed in the Battle Group (BG). In order to develop
".nouocapabilities to meet the most stressing requirements for coordination,
"1!. Introductio the following assumptions were made. First, the location of the war-

fare commanders on different platforms intensifies coordination
' Composite Warfare Commander Concept requirements. Second, full delegation of responsibilities by the CWC

* to the warfare commanders is the most stressing case. Third, the
Current Navy directives provide for the Commander Battle maintenance of the warfare area complete track picture is the most

Force/Groupý at his discretion to employ the Composite Warfare communication intensive of the warfare commander's responsibilities.
I"" Commander (CWC) doctrine in command of his forces.I1I The use of

this doctrine under control of the Officer in Tactical Command (OTC)
establisheo a CWC who is responsible for defending the force from air, I1. Command Facility Capability
surface, subsurface, and other types of threats. When necessary, the
CWC will designate three subordinate warfare area commanders who, Assumed Capability
when delegated authority, coordinate offensive and defensive opera-
tions with conflicts being resolved by the CWC, who retains control In general, the command facilities being developed to support
by negation. the CWC and his subordinate warfare commanders provide similar

capabilities in terms of communications, display, data base, and
Command Support Facility Development processing, although the methods of implementation may differ signi-

"ficantly. In developing the interoperability requirements, the follow-
The Johns Hopkins University Applied Physics Laboratory ing assumptions were made with respect to the commandb facilities

(JHU/APL) under the Battle Group Anti-Air Warfare Coordination capabilities.
(BGAAWC) Program is developing the Battle Group Anti-Air Warfare
Display Group (BADG) to determine the display, decision, and Each command facility will have access to the full set of tactical
communication requirements of the Anti-Air Warfare Commander digital data links and satellite links that are available to a surface
(AAWC). The BADG serves as a development tool for the design and combatant. Figure 1 shows the 1990 communications environment
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Figure 1. BADG Communications Environment.--

for the BADGIADS configuration that will be placed on the AEGIS III. Command Facility Cmmunicationse:'
TICONDEROGA Class cruisers to support the AAWC. Figure 2 shows".

th; ýcorrespoitding communications environment for the TFCC that is Current Methods
to support the OTC/CWC aboard carriers and other selected com-
batants. The full complement of links are required to ensure that There are three primary methods for timely information transfer
both sites are full participants in all coordination and reporting nets between command facilities in the Fleet today. The fastest method is
of the BG for access "0 tactical sensor data and exchange of command the computer-to-computer digital data link such as Link. 11 and Link
messages. 4A that is used to carry track information and limited! force orders.

The method most commonly employed for the routine:message traffic
, All BG organic and non-organic sensor information should be is the teletype transmission, which is usually sent over HF circuits or
; available at each command facility. This implies not only the need on satellite channels such as Fleet Satellite Broadcast and NAVMACS,

for access to external communications links to obtain the sensor data, and carries record message traffic, operational orders, summary and
S but the ability to store and process the track information as well. This status, and limited contact reporting. The most heavily depended

requirement is particularly important to the warfare commander, who upon method is still voice communication that is used for coordina-
is maintaining the BG track picture for his warfare area, in that it tion and almost everything else.
eliminates thc need to transmit the large volume of track information
to the CWC, since the CWC already has similar information. Instead, Proposed Future Methods
the warfare commander need only send interprests:ve intormation of
the track picture such as groupings, identification resolution, and area With the advent of the advanced display and proeessing capa-

- boundaries, thus reducing communications loading. bilities in the command support facility, the potential exists for
fourth method for information transer: command summary display.

"" The command facilities should have the capability to present The summary displzys that are obvious candidates are the alphanu-
" " Automatic Status Board (ASTAB) information which consists of meric ASTABs and the graphics LSis. In addition, operational

alphanumerics on a CRT display and to present graphics and alpha- orders, summary 3nd status, and contact reports that, are manually
numerics on a Large Screen Display (LSD). These are required to entered for teletype transmission can now be automated with

, display the BG status information and track picture respectively, computer-aided message generation. Advanced command facility
4 processing would then generate selected classes of messages directly

Finally, it is necessary that each command facility maintain from the data base contents and would prompt the operator when 7-
. technical information data bases (ship characteristics, sensor perform- necessary.

ance, weapuni capabilities, ctc.) so that the bulk of this information '.%
S" does not have to be transmitted between facilities when referring to a

track with a particular identification.
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ZYN-UUUUUIEOU
IPRECEDENCEH(OTGOEOU Communications Media
IORIGINATORHIEOL) HEADER
IADODESSEEIIEOU It is assumed .tat the summary display RAINFORM GOLD
MS SIF/COMMAND/GOLD/SER 0J9/JUNIEOL messages will be seit within the BG via the Officer in Tactical Corm-
NANRIASTB:FORCOMSATL/rRCE_.COMMUNICATION_.STATUS/(EOUL mand Information Exchinge System (OTCLXS) of FLTSATCOM or
/IS UNKS14 ST'TUS*4 EMCON*4JMD/IEOL via a character-oriented subchannel of the Joint Tactical Information
/*7 JTIDS4I GRN-7 U's GRN/IEOU Distribution System (JTIDS). It is important that multiple paths existI*7 UNK 1112 GRN*7 U.S YEL/(EOLI
/7 LINK 4A112 GRN*7 U.S GRN/(EOL) for transmission of this information to improve survivability and

l*S VOICE NETS/rEOLr throughput.
/7 AAW CM0"12 GRN*7 U.S GRN/IEOLI
/'7 AAW RPT*12 GRN*7 U.S GRNI(EOL"
/*7 LINK COORD*9 GRN*7 U*A GRN/IEOLI
l*S CAP CNTR/(EOLI V. Conclusion
/7 GZRNI GRN'7 U.S YEL/AEOLI
/17 FIN*w6 GRN'7 U.S GRN/IEOU Communication between the Batde Group CWC and subordinate I'
!*7 R2Y*16 GRN*7 U.S YEL/E~OL
'/-7 N71S3 GRN-7 U.S GRN/ENLIEOLI warfare commanders through summary display transfers can enhance
ENDAT/DECL-31-DECEMBER-I.SWEOL) coordination between commanders when used in conjunction with
MTIEOM) other communications methods. The display transfers require ad-

vanced processing, data base, and display capabilities, but can be
Figure 4. Example ASTAB RAINFORM GOLD Message. performed using existing Navy message formats on .xisting and near-

future communications links. The transfer of graphics displays
denotes a string of n spaces. This serial compression technique is requires the development of an intersystem graphics language such as
economical for a string of 3 or more spaces between characters and the aforementioned graphic overlays.
can save up to 50 percent in message lengm for displays with few
characters and many spaces. Future efforts in this area include examination of other inter-

system graphics languages such as North American Presentation-Level-
A formatted character field transfer was considered, where each Protocol Syntax (NAPLPS),[ 4 1 modeling of command facility display

command facility would store a copy of all possible ASTAB formats message cxchange Co determine communications loading, and the
with header and column information, and only tactically significant actual demonstration of command summary display transfers between
information fields would need to be transferred. This format was the BADG facility at JHU/APL and the TFCC facility arNOSC.
rejected since it constrained the type of ASTABs, req,'"!d force
ASTAB configuration control, and increased processing complexity.

References
Large Screen Display Transfers,

1. Naval Warfare Publication 8-1, "Composite Warfare Doctrine
A LSD contains graphic and alphanumeric information as well as (U)", CONFIDENTIAL, dated June 1982.

multiple special symbols, that are commonly configured to represent
force track p!ots. The RAINFORM GOLD message format was also 2. C. J. Grant, "Interface Design Guidelines for BADG-TFCC
chosen for the LSD display transfer. In this case the graphics informa- Communications (U)," CONFIDENTIAL, JHUIAPL Fleet
tion is represented in the message in the form of a display overlay. Systems Repcrt FS-82-114, dated November 1982.
The overlay for a circular boundary, for example, is described by the
letters "CIR" followed by the position of the circle center, and its 3. F. C. Leiner, "Current Requirements for Information Transfer
radius. Figure 5 shows the overlay representation for a line, dashed Among the AAWC, the OTCICWC, and Other Command/Coordi-
line, cir-le, dashed circle, arc, rectangle, string of 'ext, and a symbol in nation Authorities within the Battle Group (U)," CONFIDEN-
a RAINFORM GOLD message. TIAL, JHU/APL Fleet Systems Report FS-82-275, dated ___

December 1982.
As previously mentioned, the information transferred from a

warfare commander's LSD track plot includes only interpretative 4. J. Fleming and W. Frezza, "NAPLPS: A New Standard for Text
information and special tracks. It does not include maps and track and Graphics," Byte, Volume 8, Number 2, pp. 203-254, Febru-
position information which are assumed to already be available at ary 1983.
both sites. Not only does this reduce communications loading, it also
eliminates interoperability problems due to displaying map informa-
tion thro'gh different types of map projections used in the command - -

support systems (mercator versus orthogrnphic projection).

HEADER
NARR/OVLY: TITLE/LSO DISPLAY NAME/(EOL)
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Figure 5. Large Screen Display, RAINFORM GOLD Formats.
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A MAN-MACHINE INTERFACE CONCEPT FOR A STATE-OF-ART,
SHIPBOARD, COMMAND/CONTROL CONSOLE

Dr. Glenn A. Osga

Naval Ocean Systems CenterS~~San Diego, California 92152 """

Exist•ng tactical display/control consoles which COMMUNICATIONSIANALOG 0
are located in Combat Information Centers eCe)Q... CONTROLSAREA
aboard Navy vessels do not take full advantage of 1 HIGH I.ESOLUTION
existing hardware/software/human factors technology. CRT
In addition to limitations imposed by hardware con-
straints, the user-Interface software imposes a COVER
difficult-to-learn interface upon the complex task-
demands of the command and cg~O l environment. The 11"x15.
Naval Ocean Systems Centers (.'OSC) has developed a DIGITIZER
prototype for a command/control console which
features many design advantages in comparison to
existing consoles. The new configuration presents a
diverse array of human-engineering issues, some
specific to this console and others generic to all
consoles. An overview of these issues and relevant
research conducted at* NOSC is presented in this 48
paper.

Introduction

In 1978, NOSC began conceptual design of a CIC FUNCTIONAL
console which was originally conceived to meet the MODULES
needs of light-surface combatants such as hydrofoils.
The applications for this new console expanded to all
Navy combatants as the design was determined to S
alleviate many present console problems. Specifi-
cally, these problems include: High power consump-
tion (requiring water cooling), high cost, heavy
weight, and lack of flexibility/growth. The design

approach was to incorporate current computer and
display technology to alleviate these problems. The
console is currently called the Lightweight Modular 34"

Display System (LMDS), and it has shown to be very
promising in terms of meeting these functional Figure 1. Lightweight Modular Display
design goals. Prototype Console

LMDS Hardware Configuration '"

The present console configuration consists of § 'r
two primary user-interface units, shown in Figure 1.
A single, high-resolution, monochrome, 15-inch (diag-
onal) CRT display unit and an 11- x 15-inch high-reso-
lution digitizer tablet are used. The display
resolution is 1024 x 1368 discrete points or pixels. -TT
The effective viewing area is 8 x 10.75 inches. MENU TACTICAL MENU
Figure 2 presents the general display format seen by FUNCTIONS DISPLAY FUNCTIONS

the operator. The center 8- x e-inch area is used DATA or DATA 814S
primarily for tactical/positional and tabular data DISPLAY SOMEFUNCTIONS U!SPLAY

presentation. The display area on the right and left gmargins provide information such as control labels,|-

control actuation feedback, system status, and other
prompts. The area to the left of the lisplay unit
is reserved for communications equipment and analog
display controls.

The digitizer tablet has discriminable points - - 10.75"-
at .0,A-inch separation (250 per inch) in both X and
Y dimensions. It responds to light pressure from 1368PELS ----------------- 7
either a finger touch or stylus, and transmits a
digital word which represents the centroid of the
pressed area. A cursor is presented on the display Figure 2. General LMD3 Display Format
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corresponding to the location on the tablet. Position typical console user graduates to on-the-job train-
is updated rapidly (approximately 100 msec.) such that ing where he acquires a working knowledge of the
position feedback delay is not perceivable. There are system. This cycle is constantly repeated as
no labels printed on the tablet in the current config- personnel are transferred or leave service. These
uration * conditions clearly dictate the need for an interface

which can prompt and aid the novice user, while pro-
A Plexiglas cover is placed over the tablet to viding flexibility and 'shortcuts' for the experi- .

provide usable space for the placement of materials enced sser. Present consoles and interface software .
such as printed messages and notes. A movable fold- do very little of either.
down keyboard is being considered which would store
beneath the Plexiglas cover and fold down over the The shipboard environment requires that equip-
tablet. Plungers placed beneath the keys would acti- ment meet tough militarization requirements, and
vate the tablet. Metal overlays which would help that noi-e, vikration, and platform movement are con- %
guide finger placement on the tablet are also being sidered in control/display design. Watch lengths
considered. are usually 4 hours, but may be longeri and the sea-

state may impose a degraded environment for control
Key Human Factors Study Areas and display. These constraints must be considered

together with the precision required when selecting
The interface design goals for LMDS include the input devices (i.e., fixed or movable). Equipment

following: and communication 'noi.' combine to produce a high
level of ambient sound. Ambient noise will limit

1. Improve feedback to user the effective use of aural feedback.

2. Reduce user-memory load Human Engineering the LIDS Configuration S

3. Iccomsnoiate different user skill levels A comparison of user tasks and information
requirements with the hardware cenfiguration

4. Improve data filtering capability provides a 'shopping list' of Human Factors
considerations from which trade-off studies can

5. Improve response time/accuracy for track be generated. Table 1 presents a list of the
designation major task areas and a subjective rating con-

cerning the adequacy of the display and tablet • S
6. Reduce operator errors in supporting each task area. Performance. within

each of these task areas is under continuing
7. Reduce operator training requirements study at the NOSC LUDS laboratory. ..

Meeting these design goals will require careful study Table 1: Overview of the LUDS Configuration Support
of u-er information requirements, user tasks, user for Command and Control Task Areas
skill levels, operational environment and training
methods. LuDS CONFIGURATION

User Tasks/ Digitizer Single 15-in.
User Requiremo-nts/Tasks. Since the LMDS ctnsole rep- Job Requirements Tablet Display
resents a radical departure from existing consoles it
forces the designer to make a comprehensive study of Track Designation
the interface needs for all command/control tasks. Cursor Positioning adequate adequate
User information needs and tasks will vary consider-
ably across the personnel structure of the combat Alphanumeric Data
team. Whereas previous consoles were primarily used Input poor adequate
for 'input' operators (i.e., those tracking targets Alphanumeric/Tactical
and updating tactical data bases), future consoles Data Display -- limited
will also be used as workstations for high-level
decision-makers. In addition, many of the tasks Menu/Function
which are currently done manually will be automated Selection adequate adequate
to a greater extent in future Combat Direction Procedural/Interface software software
Systems (CDS). Thus, more tasks will be delegated Tasks d"e"enn
to a supervisory control mode with the oTerator .....

requiring frequent updates on automated task
processing with the capability for manual verride. Track Designation/Cursor Positioning The

Information requirements for higher-levei decision- operator must be able to designate individual tracks
in order to perform some function (identification,

makers will be increased by an enlarging o. the interrogation, data amplification, etc.). He must
threat area and sensor ranges, coupled with an also be able to position a cursor to select func-
increased variety of countermeasures/weapons. Users tions, menu items, and place graphics at precise
must be able to cope with an overwhelming ount of l o n e a s kravailable~~~~~ dat 1y usn0ipa otost lo locations upon the display. Those tasks are per-
available data by using display controls t allo formed by using a trackball device on existing
for data filtering of positional and tabul data. consoles. A recent NOSC study compared a digitizer
User Skills/Training/Envirorment. It is use ul to tablet with a 1:30 control/display (C/D) ratio to a .

think of Navy console users as falling along a con- trackball device for a cursor positionle g task. i]

tinuum from novice to expert users. Novices are new This study indicates that the tablet device willes

to the Navy Tactical Data System (NTDS) by v rtue yield comparable performance to existing consoles

of being new recruits or by transfer from a non-NTDS for cursor positioning task•. [2]
ship. Typical training involves a 3- to 4-week Alphanumeric Data Input. Requirements for
'Input' course followed by a 3- to 4-week 'User' Ap .

alpha character data entry vary across operatorcourse for higher-level decision-makers. Training, pos..tions and ship types. For *xample, operatorstherefore, can be described as a quick overview of may add to the graph'.c track symbols. Certain %!
higher-level AEGIS ship-class operators may enter
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doctrine data thrc.;:g a 3 x 6 button array of systems. Given the training structure defined
alphabet charactert. The operator must page back earlier, the system needs to accommodate novice and
and forth between two arrays which each contain expert users. Tutorials, training modes, and menu
half of the alphabet. The paging has shown to be by-pass features are needed for various user skill
cumbersome, but practical, for minimal data entry, levels. Programmable default options with edit
Indications are that future requirements for alpha capability should be available to users. Users
data input will increase for tasks such as doctrine should be able to 'verify to proceed' rather than
entry, mission planning parameter entry, and deci- be required to fill in menu selections. Multiple
sion-aid use. Numeric data are entered through a default lists would be extremely valuable for tac- . -
numeric keypad called the Digitzl Data Entry Unit tical symbology and display graphics. The menu net-
(DDEU). This device is used for a variety of tasks work 3tructure must be compatible with user expec-
as tracks are commonly referred to by their four- tancy and should minimize display paging and search
digit identification number. The digitizer tablet time within a given frame.
will present special problems for alphanumeric input
tasks due to the lack of tactile feedback and limited Con-llusions
possibility for audttory feedback due to background •
noise. Tactile feedback may be provided in the form This paper has touched upon a number of human
of 'locator bumps' on the tablet; however, this may factors issues which arise in the design of a multi-
aid function selection tasks much more than data purpose command and control console for emerging
input tasks. Errors of character omission and double combat direction systems. NOSC will be conducting
entry will likely be much higher than a conventional an ongoing research program to address a variety of
keyboard. Studies are pldnned to investigate the interface issues, some specific to the current LMDS
need for a fold-down keyboard for alphanumeric data project, others applicable to a generic console.
input. Operator needs are often neglected in current

cormand and control interfaces, most notably the
Alphanumeric and Tactical Data Display. Modern lack of proper feedback, and complex procedures

C2 systems can quickly overload operators with irrel- which require extersive learning while placing a
evant and densely formatted data. A basic design heavy demand upon operator memory. With a compre-
question is how many displays are needed and how to hensive human factors program, many interface prob-
appropriately format and combine alphanumeric and lems can be addressed early in the console/combat
graphic data. Current state-of-art consoles usually system development cycle, to ensure .that past design ,'-:-

include the Planned Position Indicator (PPI), errors are not needlessly repeated.
or radar screen as the p •y display supported by
an adjacent CRT for alphanumeric data. This configur- References
ation is based more upon engineering feasibility than
consideration for what the operator needs to perform 1. Davenport, S.W. and Bemis, S.V. Tracking Per-
his job. Digital radar and emerging scan conversion formance; Trackball vs. Digitizer Tablet
techniques make possible the conversion of alphanu- Technical Report 824, Naval Ocean Systems
meric %nd sensor (tactical) data on a single display. Center, San Diego CA, 1982. . ."
Techniques such as windowing and scrolling/paging
may permit a single display to provide all the data 2. Albert, A.E. "The Effect of Graphic Input
needed by the operator. The feasibility of a shigle Devices on Performance in a Cursor Positioning
display will be considered in future NOSC studies. Task." Proceedings of tha Human Factors
A recent study of tactical symbology fonts for Society 26th Annual Meeting, 1982, 54-58.
raster displays established a baseline size for
raster-drawn symbology. [3] A current NOW study is 3. Dega, G.A. An Evaluation of Identification
evaluating different symbology font styles which are Performance for Raster Scan Generated NTDS
derived from this baseline font. The objective of Symbology Systems Exploration, Inc., Report,
these studies is to produce symbology which is Contract No. N00123-80-D-0263, San Diego CA,
'compact' and minimizes display clutter while being June 1962.
readable at adequate error levels.

4. Gould, J.D. "Man-Computer Interfaces for Infor-
Menu Foxmats/Function Selection. A diverse mational Systems: Lecture to Human Engineer-

array of design qw-stions are included in this topic ing Short Course," in Huchingson, R.D., New
area. First, the C/D ratio must be optimized for Horizons for Human t mctors in Design, McGraw-
fine and gross cursor positioning tasks. The opti- Hill, 1981.
mum ratio will determine minimum tablet size. The
menu formats and method of function selection are
related issues which will require careful study.
Function selection methods include: single action,
single action with software delay, double action,
multiple actions. Major considerations in met.4od
selection are the severity of an input error,
desired response speed, isolation of the function on 9
the display page, and multiple sequence tasks. The -
guiding rule for method selection is mimimize the
number of alternate methods and be consistent in
their application.

General Intarface Issues. A number of diverse
issues fall under the general category of tasks
related to the overall operating structure. Feed-
back requirements Include% input vet. .fication,
process completion verification, state-of-system,
and error messages. [41 User-feedback has been most
noticeably neglected in present-day Naval ccubat
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MULTI-SENSOR FUSION, COMNICATIOtIS AND
UNKMTION WARFARE

Daniel Schutzer

IN'=DTrIOt4 where0

) odays fusion problems are chiefly concernF J with U , entropy, or ignorance, of friendly
organizational and procedural issues. The technolJogy va entropy, or ignorance, of mnemy
they employ is mostly available state-of-the art. u a change in entropy of friendly
'The future brings ; new set of concerns centered v - change in entropy of enem~y
about issues that are more technical in nat-ure.
future military command and control and weapons a, b, c, d, a*, b', c', d' are positive
systeme will likely be more distributed, more constants.
automated and smarter. They will probably include an
advanced form of information warfare where sensing, Friendly Sensor masurements, intercepts of enemy
information exchange, jamrming, deception, and communficationls and sensor radiations, and human
misinformation will be capable of being managed and intelligence reports are received, combined, and
orchestrated from a total mission objective interpreted to form two pictures, friendlies state of
perspective. As a result, the future fusion process knowledge of the situation and the oppnents state of
will be required to handle and process on orders of knowledge. This includes sucii informati-on as wnat
magnitude increase in the volume and diversity of units are located where, their course, likely
input data, faster. IIt will need to produce a great destination and intentions, with indications of the
variety of information to feed automated C2 and confidence associated with these estimates. Since
weapons system. data bases through more interactive information warfare is a two-sided contest, it is
and responsive interfaces than exist today. At zhe assumeid that Loth parties will seek to select that

saetire it needs to analyze this data at a deeper combination of information manipulative functio-ns
level of understanding than ever bvfore, scrutinizin*; which se-v es their best interests. Accordingly,
and drawing inferences and conclusions about ones friendly should select that set of information
adversaries underlying beliefs, readineass, intentions manipulative functions which results in a maximum 9..
and future actions from what is often tijres a suspect objective function assuming that the opponent will
and spotty data base. Finally, these conclusions and always select a corresponding set of information
inferences need to be presented in a dlear, concise, manipulative functions designed to minimize the sane
honest, but convincing and timely aanner. This paper objective function. This is a worst case approach. ...

presents a unified framework from whi%.-h the necessary It might prove desirable to provide the decision
information may Le fused, managed and presented to aaker with other possible control strategies and
support comand in such a future information warfare their possible outcomes; such as one based upon a
environment and discusses the associated technical best case analysis and another based upon a most
challexqes. This paper reviews various onooing likely (derived from historical precedence) enemy
research programa that are addressing these response.

chalenes. (Z---*.........Of course the end objective is to prevail in
battle, mayimizing the enemies losses and minimizing
ones own losses. it is sh-wn in reference (2) that
the amount of knowledge, or information, a cumibatant

INPORMI9TOtI WARFARE COTRO~L STATG possesses directly influences his com~bat
effectiveness. Accordingly, it is recommended that

%hen viewed in this manner, the strategy prior to the selection for execution of any set of
illustrated in Figure 1 emerges as a reasonable information manipulative functions, a projection of
information handling systems design and control attle outcome be determined which includes the
scheme. The objective of this control strategy is to likelihood of enemy initiatioy of conflicL and the
maximize a measure of the s-mbined state of knowledge predicted losses and associated risks. This battle
of own forces and state of ignorance of opponent outc--e prediction should be presented along with
forces such as f -u)v, through judicious application information manipulation control strategies so that a
of the information manfpulative functions. A course of action may be determined which includes
mathematical expres ion that represents these consideration of the initiation of conflict as well
relationships has been developed in references (2)n anrelien orto are actieons

o~~thestxated~a foatoamisoojeivitrpurete infomaern twarar aictre:rions. ie sttf.-

(3), and (4). It takes the form of the following
differential equations:

u-au-b( -u)v+c'( -ur)( -v)4d( F-u) PES
v-aiv-bu( -i)unC( -u)( -v)idt( -v) We have discussed how,, in the future there will

be more sophisticated and capable systeas providing a
greater diversity and quantity of more timely data
nor fusion and analysis. The enemiy, however, will beta
more sophisticated and capable in deception,

irecen page bnlaonk acamouflage and decoy. Consequently, we will be
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required to make use of ýhis increased data just to The stages of the intelligence process are of
accurately monitor the enemy without being surprised course highly interactive in that data does not flow
or fooled. Mobreover, the increased tempo of battle n3atly left to right as inplied in Figure 2, or in
and the needs of the unified information warfare any fixed order. Rather, an intelligence analysis
strategy, require us to analyze, process, and fuse, problem gets worked simultaneously at all stages or
this increased volume of data in even shorter time. levels (top-down, bottoM-up, and from the middle)
All this highlights the need for an improved more with tightly coupled feedback loopP between all 0responsive fusion process. stages or levels. Further, analysis is inherently a

human-directed process where the information
more specifically, we are concerned with the processing techniques develcped would serve as an 7

following sorts uf improvements: assistant, amplifier, and advisor to the intelligenceanalyst, and not as a replacement. Accordingly they
1. The percentage of data received that is should be designed to allow an analyst to do his job

profitably used (exploitation of current data. better, consider more variables, and work faster andmore efficiently. Because of these attributes an
2. The volume of data that can be processed in architecture is proposed that borrow from thea fixed amount of time (system capacity). Hearsay III Blackboard model (a federation of expertswho collaborate on solving a problem through the

3. The ability to select and prioritize input mutual sharing and updating of a c n hierachically
data to be processed and/or disgarded by its value structured multiple view of the emlving problem
added (selective processiag). state). Key components 3t this architecture is

illustrated in Figure 3 and is expLained below. -
4. The speed at which data can be received and .

processed (timeliness & throughput).

5. The quality of the information output
(information credibility, reduction of ambiguity, Sensor data comes initially processed and in
resistance to camouflage, cover and deception, multiple forms: formatted messages with features and
confidence in predictions). parameters identified, narrative text, and imagery.

In some cases even the pre-procesed signal video
6. The effective use of the historical archival (telemetry, ELINT waveforms and acoustic lofargran . .

data (exploitation of archival, historical data). data) is available. It is ass that all ELIN"
data gets processed and reduced t- I message (fixed

7. The behavior of the system under data format or narrative) at the coLU :ion/sensor site.overload/saturation (system stibility), The raw imagery ano signal vide,6 provided would be ino os saddition to the preliminary processing at the

8. The manpower requirements (number, skill collection site and to be used for more in-depth"level, training, fatigue). analysis. Thus, when dato enters it goes two placesinitial feature parameter analysis; and data storage

9. The relevance of the processed information and retrieval. The feature parameter analysis
to the situation and the decision-makers needs 2 unction is primarily a pattern ecogtnition
(inform tion tailoring, responsiveness/relevance, syntactical and statistical analysis process whereanticipation of information needs, and data features and parameters such as Ppp, mojulation .
reduction). parameters, harmonic pairs, image ribbons ard .exture

measures get reduced to various cobinations of
10. Effectiveness of the sensor collection discriminant categories and classes which are then

tasking, sequentially tested against an existing S
parameter/feature data base constrained by associated

11. The integration of analysis products collateral data such as candidate object locations
produced at different contributing and characteristics, and time of observations. The
sites/organizations and locations and the resolution objective of this sequential test process is to
of collection tasking conflicts and priorities reduce, through elimination, contradiction and
amongst these various locations (analyst inter-site deduction possible associations between received:
integration), feature and parameters to as small a set of feasible

candidate objects, events and event hierarchies as 0Our primary interests are with technologies -possible. The result of this process produces mixed
concerned with the processing, organization, results. Some discriminants have very strong unique
retrieval, presentation and dissemination of data and associations with a specific object or event, others
information. Deeper interests lie in gaining a can only be ambiguously or probabilistically
greater understanding of the theories of human assomiated with one or more objects and events.
cognition and reasoning and of plausible inference There ar.e several technologies that would oe useful
and deduction as applied to the intelligence analysis in this area: high speed signal processors (e.g.
process. At all levels of this process there is a VHSIC, array processors, systolic processors) would 0
need for toetter ways to process, reduce, ard be necded to execute the compute-intensive
interpret data in order to produce timely and multidimensional pattern and cluster analysis
relevant information. algorithms requited against the potentially high

volume of input data. Natural language processing
techniques are needed to reduce the time and manpower
currently needed to interpret the large volumes ofthe intelligence analysis process and the form of Lte narrative messages into formats suitable for further

data at that stage. It includes such areas as high computer processing. The raw sensor data is assumed .
speed signal processing and pattern recognition, to be first stored. It is retrieved and processed-
symbholic representation and computat ion, extremely only in response to special directed analyses and
high density storage, image, speech and text questions that get identified further down in the
underst'nding, distributed hypothesis generation and analysis process. Discussions as to how this data
prcbleri-eolving, planning and scheduling, gets retrieved and processed will be discussed in
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greater detail in the section on ihata Storage, have the capability, at a fairly high level of
Retrieval and Inference. abstraction, to .iodify and adjust the initial

hypothesis to a nore suitable one of his choosing.
The hypothesis generator should be capable of

I!LR OCNEPT GENERATOR reevaluating the feasibility of two or more
hypotheses simultuneously. At least one hypothesis

The Intrepreter/Concept Generator atter-ts to should act as the duty skeptic, constantly checking
logically relate the data pertinent to the current for the possibility of deception, looking for the 0
situation/state description to logical chunks of notable absence as well as the receipt of confirming
information related to, or associated with, concepts, data. This is something the human finds very
objects events and event hierarchies. This logical difficult to do. Psychological studies reveal that a
association can probably be most naturally expressed human typically forms a single hypothesis, and once ---
in the form of frame/script based hierarchies. Each formed, he terds to look for confirming evidence
object will have slots representing attribute data only. The incoming data and p-eviously derived
such as physical features, electronic order of evidence should be cxntinously reviewed for
battle, current location, past locations, speed, and indications of some change to any of the set of all
associated events, event hierarchies and rules of possible hypotheses and it should alert the analyst
behavior. Events will include such items as *missile when any significant change in the rankings of any of
firinig or *report backO. Each event chunk (or the hypotheses occurn; a previously likely hypothesis
concept) will have slots associated with such becomes suspect; a new hypothesis other than the ones
attributes as measured observables, action taken, currently under serious consideration is suggested;
involved objects, location and time. As mentioned or perhaps, wr.,n there is not good fit of any
earlier, events can in turn be associated with other hypothesis to toe evidence at hand. In addition, the
events as an identifiable time and/or order dependent hypothesis generator should have both pre-set .
sequence hierarchy; e.g. 'coordinated attack heuristics and user - specificable and adjustable
operation'. As data is placed in the data base the heuristics that examine the incoming evidence for
Interpreter attempts to fit the data to slots in the clues of confirmation or denial of currently favored
various object and event frames/scripts. Each object hypotheses, and to assist in the nomination and ..
and event frame have Jemons (embedded procedures) formulation of new hypotheses. These heuristics
that get triqgered as a function of the specific ota should make use of such indicators as activity
clues or operations to look for inconsistencies, patterns and statistics, the observed time, order,
establish linkages or alerts, perform special and sequence of events, user-specified interesting .. S
computations and take other actions. The ana unusual associations or unexpected trends,
Interpreter/Concept Generator maintains the common negative information, and recognition of inconsistent
hierarchically structured multiple view of our patterns and inferences. These heuristics can
collective knowledge of the evolving problem state, generally be expressed as an unordered collection of
It should be capable of linking together one or more 'IF, THEN* conditional statements or production
parameters, objects, and events with an associated rules. Thus, the hypothesis generator is envisioned
confidence and propagating that confidence measure up as borrowing heavily from the expert system -
the common multiple view hierarchy and across a chdin production rule methodology. It should be capablce of 0
of logical deductions, operating both in an automatic data-driven mode,

alerting the analyst when some change of interest has
aiczur red, as well as being able to be interrupted,

HYPOTHESIS GEIERATOR tasked and/or queried by an analyst in more
goal-directed search mode. These predicted

The hypothesis generator is concerned with activities are transmitted over a cooperative analyst
higher level aspects of the current situation under network for confirming evidence in support of the
study such as enemy strategy and intent. It attempts generated hypotheses. In addition, the hypothesis
to associate or infer what is the purpose or generator exchanges alerts over the analyst net
motivation behind the observed sequence of events; whenever unusual or highly interesting alerts,
e.g. exercise, heightened state of readiness, a situations, or indications arise. The hypothesie
planned deception some other operation. This is one generator is used to drive the collection
of the more difficult areas to deal with and is one manager/test planner to prioritize the order in which
of the more highly intuitive and unstructured incoming data is processed directs the browaing
functions. Accordingly it is envisioned as being the through of historical data.
most manually-driven of the functions discussed so S
far. In the Feature/Parameter Extraction function -'
anr in the Interpreter/Concept Generator function, cOMECTION MANAGER/TEST PLANER
the data, knowledge representation and inferencing
structure pill likely be defined in advance with the ite collection manager/test planner is concerned
process being fairly automatic; the analyst with assisting the analyst in providing appropriate
interacting on an exception basis. feedback and tasking to the collection sensors and

sources. The analyst has the opportunity to resolveIn con~trast to this approach, the formation and inoonssistencies, remove ambiguities, and to decide-. ...
the selection of hypotheses is expected to be a inositniereoeamiutis adt"d"d
dtha clyc han ingfuncth onassis expetedytochibe abetween hypotheses by appropriately cuing, alerting,
dynamicall changn fionsand a ssidsbuted c y mcontoed and tasking the collector for confirming or predicted
andomanasuged tions andalyst. Fr x oey onthdata. To provide this capability the collection
and managed an analyst. For example, the manager/test planner maintains a data base concerningHypothesis G~erator should be able to generate the various collection assets, their availability and """'
canned predi ions of event sequences and object t iis hl i
inter-relati hips for several re-specified enemy appropriate physical characteristics. Both theplansandsathips aorsevera l funct cf id th e my interpreter/concept generator and the hypothesis
plans and stategies as a function of the generator signal the collection manager/test planner 0environmental and situation-specific3. These initial for assistance whenc.'er they encounter a conflict or
event sequence predictions are anticipated as merely ambiguity that requirves resolution or whenever they
being a departure point for the analyst who should have reached a dead-end in their analysis. The * '.p'
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collection manager/test planner produces, based upon DATA STORAGE, RETRIEVAL & INFERE'ER
the set of initial hypotheses, a decision trge of
collection measurements from which a best set of The data base ij envisioned as being extremely
measurements. is chosen. The best set of measL .. ents large, 1014 bytes or ;reater. It will contain a
is that set which will bring the system closest to mixture of data and information, types and forms
reducing the candidate hypothesis to a single one including: historical narrative data, imagery and
under such user-specified constraints as the cost and formatted computer data including hierarchical
likelihood of the collection tasking request bO.ng multiple views of the past, current and predicted
satisfied and its probable outcome. These state of objects, events and missions under
conditional probability outcomies are det~ermined from analysis. The size and complexity of such a data
both nadles previously provided by the analyst or base dictates a hierarchy of advanced storage media,
r -prox~ffet./ oy the output of the such as magnetic tape, optical disc, and random
pcediutr/similator, discussed next. The collection access memory. Associate processor technology, array
manager test planner can be asked to provide a second processors, systolic arrays, or the like may be
o6 third best collectilon strategy, or zan be required for rapid content-addressable data retrieval
interrupted and asked to provide a best collection and update ('smart" memories). Heavy use is •
strategy based upon a new set of constraints supplied anticipated of the technologies of predicate
by the analyst. Once a collection strategy is calculus and deductive inferencing so that
selected by the analysis, the appropriate tasking information may be queried and retrieved that is not
messages will be automatically generated and explicitly stated but that may be derived or deduced
submitted for analyst approval prior to their from data that is explicitly stated and stored. Aids
submission to the appropriate collecti.on tasking should be provided to allow the analyst to
organizacions. These same collection tasking selectively browse through a large text or imagay
requests will also be transmitted across the data base. The analyst should be able to identify S
inter-analyst net to other cognizant analyst selected subjects, keywords, sounds, spatial features
organizations working in related areaL for and relationships of interest, and the context under
coordination and for internal resolution of tasking which they are of interest. The data storage,
conflicts and priorities, retrieval and inferencer should then be able to

select relevant text, images, etc. for presentation
to the analyst with a high confidence that all

PREDIC IR/SIMTLATOR relevant items and only relevant items will be
retrieved. If the numoer of items selected for •

The predictor/simulator is a fast simulation retrieval exceeds some reasonable threshold, the
model that simulates/models the motions, behaviors, analyst will be informed of the number of quslifying
emissions and detections of target objects and itcr-. He may then request to see them ail
sensors in a faster than real time mode. It is input one-by-one, or he may Loose to add additional
with high level, fairly abstract descriptions that qualifiers and constraints to his request for data.
are outputted by the interpreter/concept generator, To satisfy this r-,quirement, the systems needs two
the hypothesis generator and the analyst. These capabilities: namely, the ability to use the
inputs should be able to be viewed and modified by situation pieciliar context to translate the fairly
the analyst. The output of the predictor/simulator high level conceptual information requests to an
would be to move forward in time and to predict the equivalent set of data indizes and pattern feature . -
moeasurements that would result from candidate rwatches and then to scan throL ;h large volumes of
sensor/collector taskings and their associated historical te:<tual and imager datz. for matches of
probabilities. Applicable technologies are tie use the appropriate combinationr of keyword, spatial
of multi-processors to achieve the desired simulation features, and patterns at a speed cc..nensurate with
execution sp.eds and of rule-based descriptors of the the transfer rates of the storage medium. ,bhi
objec~s and events to allow for qL'fficient simulation requires some impressive lower level feature and
flexibility and for good user interface. The pAtiD pattern extraction processors interfaced to a fast
Rule Oriented Simulation System (ROSS) is a candidate symbolic processor. (Reference (5))
technology for system. It has provisions to include
rules of logic and behavior of the objects, meodels of
the units, and sensors capabilities and movements, as DATA CHIECKER AUDITOR
well as models of the env' ronment.

Closely related to the data storage, retrieval
and inference is the data checker and auditor. This S

MATCHER/COMPPJR system acts as an independent data auditor constantly
checking the collective data for internal consistency

The matcher/comparer co.pares the incoming and plausibility. It should look for contradictions, -.
signal data at both the feature/parameter and the exclusions, and negative evide.nce. This system is
object/concept level with the outputs of the also concerned with data compaction and housekeeping;
predictor/simulator. Either it finds ,'matches, o, it e.g. the merging, purging, and forgetting of
attempts to adjust, within the allowable bounds oL data/information. To achieve this s.,rt of capability
the candidate hypotheses, the inputs of the it is anticipated that this syýWtem design will borrou.
predictor/simulator with respect to object heavily from the ideas of Truth Maintenance and
orientation, motion and behavior in order to achieve theorem-proving and plausible reasoning.
a match. If a match is achieved, the appropriate "...-.
portions of the common multiple view representation
of the situation under study is updated PRESENTER
appropriately. If no match is found, this fact and
the amplifying data is reported to the analyst for The presenter is envisioned as providing 'he
further action. Much of this system is anticipated man-;;achine interface, both locally to assist ,.le .
as being highly quantitative and computation intense analyst, and externally to provide the user his
VHSIC technology and advanced pattern matching information needs and to support communications
alqorithns appear appropriate to meeting this system between the analyst cornunity. As noted earlier,
requirement, this inter-analyst network is needed to allow a more
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effective integration and coordination of the
products of the analysis community; e.g. means to
better distribute the intelligence avalysis load and
to share the intelligence product, aa well as to
better coordinite and resolve conflicts and
priorities in collection taskings related to this
cmmon distribi-ted proble-,-solving activity. The
presenter should make use of such advanced features
.a natural language and speech input and output,
menus, graphics and explanation ficilities to explain
the rationale and evidence and line of reasoning
behind any intelligence product. But it should do
more than this, it should maintain a rodel of the
user and how his information needs vary, dependent
upon the situation. It should use this model to
alert the user to situations of interest as thvy
c,=cur, and to reduce and to tailor the needs in
support of his curLert decisions as opposed to
drowning him in an information overload situation.
The "ystem bhould anticipate his need for additional
further information. ibis system is what makes th "
fusion cent:.. appe. responsive, timely, and relevantS to the user without overloading or overburdening him ..

with more data, at a rate faster than he is capable .

or cares to absorb (human bandwidth is approximately
10-40 Hz). There are techniques whereby, once this
capability is .n place that it can be used to reduce
the ccommunications overload normally associated with
data base query and update (reference (6)). Finally,
multi-level security will have to be addressed. We
neet. to develop processors fast enough to handle the
oulti-level security oerhead without significant
perturmance degradation resulting.
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° •TECHNIQUES FOR DETECTING COVER ANPl DECEPTION

Ct, ' a•.• Robert P. Goldsmith and Ralph F. Gerenz0 )
Betac Corporation

76 Treble Cove Road
Billerica, Massachusetts 01862

to manage perceptions during peacetime, crisis and war.S•rn•, Similarly, C & D is a major concern in successful application
* The Increasing sophistication of inteligence colections of arms control and to the maintaining the validity of a

and analysis systems has 3iven US decision makers a deterrence policy. The operational context for C & D is
powerful tool to evaluate the actions and intentions of our shown in Figure 1.
potential adversaries. At tle same time, however, these
advances have in some respecis increased our susceptability The opposing decision-maker selects both an operations
to the skillful use of cover and deception techniques. / plan and a C & D plan, the first to ach'ive his objectives,
Throughout history, the potential success of * and the second to manage friendly perceptions in such a way
"operations has been determined soley by the skill of the that counter-action will be misdirected or mistimed. These
practitioner, regardless of the sophistication of the intended plans are executed as a course of action (1), apects of which

- victim in conducting C & D operations. Today, we face in can be observed if friendly collection assets are present and
r the Soviet Union a nation which has both recognized the active when they occur (2). Threat assessment (3) attempts
* importance of C & D and has over the years demonstrated to correlate inf')rmation collected with a concept of how

"an impressive capability to deceive and mislead both its opposing forces would be used under a variety of
intended victims and the US and its allies. This paper circumstances, to produce an evaluation of what the
outline't the salient characteristics of C & D, Soviet opposing forces are trying to do. The friendly decision
"doctrine and application and some of the techniques which maker then selects a response (4), based on set policy and

" could be used to uncover cover and defeat deception. the capabilities of his own assets.

"The Operational Context for Cover and Deception The principle objective of the Intelligence process is
knowledge the opposing decision-maker's plan. Usually, this

What is C & D? cannot be gained directly. Further, the raw data which the
intelligence system receives is limited both by the

"Cover" denies an adversary the intelligence data attributes of military activity which are observable and by
needed to plan and carry out operations, and it includes both the "'ne slices when collectors are actually tasked to
camouflage and avoidance. Camouflage can be either collect. Finally, the interpretation of activity depends on
"passive, in which case it attempts to make the threat,.ning the accuracy of our concept of the opponent's force
"activity appear either benign or not appear at all, or active, procedures. Even without any intent to deceive by an

S in which threatening activity is simulated where It does not, opponent, the limitations of the intelligence process would
in fact, exist. Avoidance exploits knowledge of the leave us with an incomplete and sometimes misleading
•adversary's collection capabilities and operational use to picture )f his activities and oojectives.
deny reconnaissance opportunity.

The threat assessment process Is vulnerable to C & D at
"Deception" seeks to use both camouflage and each step. Figure 2 decomposes the process, and shows the

"* - - avoidance, together with genuine but misleading activity, to opportunities for a skillful opponent to employ C & 0. To
manage an adversary's perception of events, capabilities and begin with, an adversary can control the timing and type of
plar•n-d actions. activity by his forces to manage our perception of the

observable features of his course of action. Assuming that
P . skillful user of C & 0 seeks to provide an adversary an analyst began with an accurate baseline of enemy

- with ieces of information which appear genuine in them- locations and activity, this type of deception would cause
selves, and which fit a course of action which the adversary errors in threat situation monitoring-monitoring the current -

would find reasonable. In this, the C & 0 practitioner state of enemy forces. At this point, the opponent loses
attempts to exploit the anchoring bias of the cognitive direct control over his ability to manage perception, but
proces& [!], by presenting the strongebt Indications of the must rely on the weaknesses of our intelligence analysis
deceptim story first. If the intended victim has already system. The opponent's C & 0 plan attempts to orchestrate
formed an estimate of the most likely course of action, the observable activity so that collection distortions and

S practitiot.er need only take those actions necessary to interpretation errors are propagated through the higher
provide substantiating evidence. Once the victim has levels of intelligence analysis. -

"focused on a single most likely course of action, receipt of
I later informatlon wil be evaluated in terms of whether or Indications analysis, relying on an incorrect statement
I not it matches the current hypothesis. The victim may then of the current situation, will misdirect requests for

Ignore contradictory .vevlence, fit ambiguous evidence to additional collection. Key activities will be missed, and
match the hypothesis .,s if no ambiguity existed, and accept others will be assessed as having occurred when they have
deceptive activity with little scrutiny, only been simulated. The final step in the process, threat

synthesis, mftches key activities with the hypothesized set
Cover and Deceptlon and the Intelifence Process of cou' bes of actions. If those key activities are not

correct, identified, or if the set of courses of action is
" The 6.%e of C & 0 extends acrosi the conflict spectrum, incomplete, an incorrect assessment of the opposing

and ipplies to other dimensions of military/political decision-maker's intentions will be given to our own
analysis. Cover and oeception has been succssfully applied commanders.
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Unfortunately, many of the developments in intelligence accountable for any failure. "Interworking" is the basis for
systems in recent years have increased our vulnerability to the Soviet combined arms approach to military operations.
C & D" at the same time that they have increased our ability Interworking refers not only to the coordination leading to
to collect data and to analyze activity. Together with a joint tfforts by combat forces, but also to the coordination
greatly increased ability to collect, we have developed of front and reserve units, combat and support units, center
systems to help the human analyst oxploit that capability by and flanks.
focusing attention on items which aralysts have identified
as keys.[2 ] Thus, each enemy course of action can be broken One of the significant features of these principles is the
down into indicators-steps which must be taken to realize degree to which each is often implemented in terms of the
that action, indicators into key activities, activities into others. A surprised enemy, for example, is given no time to
observables. The result is a system of great power for recover if the attacking forces maintain the tempo of their
focusing attention on significant pieces of information and attack, and keep the initiative. Also, the dispersion prior to
for leading to conclusions of intent based upon a clear path attack necessary to preserve combat effectiveness makes it
of reasoning. The weakness of this system is that the more difficult for the enemy to determine the time and
discriminators at each step become high value targets for an place of an attack. Finally, the Soviets achieve consistency
opponent's C & D activities, and as we discuss in the next in their deception plans by a combined arms approach to
section, it is highly likely that the Soviets will attempt to C&1D operations.
expioit this weakness. In the discussion of methods to achieve surprise, Savkin

Soviet Cover and Deception Doctrine and Applications [4], mentions six general types:

Extensive use of cover and deception techniaues in the * Lead the enemy astray
tactical environment are basic tenets of Soviet military * Secrecy ot Preparation
doctrine. Natural Soviet proclivity to secretiveness coupled e Unexpected Use of Nurlera Weapons
with Siviet experience and lessons learned over the last * Deliver attacks at Unexpected place/time
thirty years have convinced Soviet leaders that cover and * New means/methods of warfare
deception are invaluable tools in tactical warfare. These e Avoid repetition of methods
attitudes have undoubtedly been strengthened by the
successful application of C&D by both Arabs and Israelis in The first of these methods, leading the enemy astray
the Middle East wars, and by the British in the Falklands. with regard to one's intended course of action, is the

doctrinal basis for Soviet deception operations, just as
The commonly held Western appreciations of Soviet secrecy of preparation is the bais for the widespread Soviet

C&D capabilities may already be out of date. The Soviets use of cover and camouflage for offensive purposes. The
have repeatedly demenstrated their ability to make the last two methods are useful in understanding how the
improvements necessary to bring capability in other fields Soviets have been able to continue to surprise their
up to the demands of doctrine. A clear example of this is opponents in intervention actions over the past thirty
the comparatively recent development and mass deployment years. In his discussion of "new means and methods of
of equipment (such as the KIROV-class VSTOL carrier) warfare", Savkin explains that this is usually acheived by
which make the extension of Soviet offensive doctrine into using existing means in ways unknown to an enemy, rather -
the naval domain a credible threat to NATO. A than by the introduction of a totally new capability. This,
corresponding effort to increase the level and sophistication together with the avoidance of repetition in the methods of
"of their C&l) capabilities can therefore be hypothesized as a operations, including deception operations, put our"most likely Soviet course of action. intelligence system on notice that hypotheses limited to

"past patterns of Soviet actions not only fail as aids to
"Soviet Cover and Deception Doctrine detection of new patterns, but also increase the probability

"that the Soviets will exploit our tendancy to correlate the
Soviet doctrine for Cover and Deception derives from elements of a new course of action with an old one. -

the doctrinal requirement for surprise, one of the hasic ,
principles of what the Soviets call "operational art". These Soviet C&D Experience
basic principles, in the order assigned by the Soviet author
Savkin [3], include: A brief summarization of four Soviet C&D operations,

beginning with the successful preparations for Operation
* Mobility/Tempo Bagration in the summer of 1944, [J] illustrates how far the
• Concentration of Efforts Soviets have progressed in the ability to lead their
• Surprise opponents astray. Knowing the German preoccupation with
* Activeness of Combat defending their economic base, in this case the Ukraine, the
o * Preservation of Effectiveness Soviets covered their preparations for an attack in
o Conformity of Goals to Conditions Belorussia through denying the Germans any information
* Interworking that would contradict that hypothesis. For this reason, the

Soviets moved their forces to their jump-off positions under
Mobilty/Tempo includes not only speed of movement the cover of darkness, and spread the observable indicators

but also flexibility , such as in changing the axis of an of impending attack over the entire eastern front- aerial
attack. Concentration of efforts is more familiar to us as reconnaissance, bomber sorties and air defense were not
the principles of mass and economy of force. By "Surprise", concentrated in the central front. Communications activity
the Soviets mean the ability to force an enemy to fight in a by units dedicated to the attack was kept to a minimum.
situation unfavorable to him- either in a place or time which Although the Germans expected a summer offensive, Soviet
does not allow him to make full use of his own forces. security precautions together with German assessment that
"Activenebs of combat" states the Soviet desire to hold the the most likely location for an attack was the area which
initiative ; this is also the principle of the offensive, they most feared to lose, combined to leave the Germans
"Prescrvation of Effectiveness" is tie Soviet reaction to the unprepared for the Soviet assault. A significant difference
advent of weapons of mass destruction, which require that between the Soviet . C&D operations and the coincident
their forces avoid premature concentration, and that they US/British effort to deceive the Germans as to the location
be equipped to survive in a CBR environment. "Conformity of the cross-channel landing, however, was that the
of Goals to Conditions" demands that the commander assign deception ended when the attack began. This difference has
reasonahl- goals to his forces. Because commanders adhere continued in Soviet operations to this day.
"to this principle, the subordinates can therefore be held
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In their preparations for intervention in Czechoslovakia DevelopinK Techniques to Counter Cover and Deception
in 1968, the Soviets exploited both Western and Czech
preconceptions of the sequence ot events which would Countering deception is a two-step process. The first is
precede such an action. In 1956, the Soviets had called the to identify the targets for deception, the second is to
Hungarian leaders to Moscow and then invaded. In 1968, the identify how C&D directed against those targets can be
Soviets moved their forces to the military districts recognized and then exploited. These techniques must th.,n
bordering Czechoslovakia for a long series of exercises, be integrated into both sensor related improvements and
summoned the Czech leaders to Moscow, and did not into the deveopment of expert systems and other AOP tools
invade. Instead, the Czechs were allowed to return hom for intelligence analysis.
believing the Soviets would withhold action as long as the
Czechs committed no excesses of liberalization. Some Identifying C&D Vulnerabilities
Soviet units were recalled from the border areas. Although
the Soviets still had sufficient force in place to intervene, Identifying C&D vulnerabilities can benefit from the
both Czechs and the West changed their assessment of great effoct already expended in the development of -...
Soviet intentions. Both were therefore unprepared when the structured indications and warning systems. These systems
Soviets, with token elements of other Warsaw Pact nations, break down a range of courses of action into the steps
invaded in August. It is likely that at least part of the (indicators) required to achieve them, decompose these
reason for the timing of the invasion was to coincide with steps into their key activities, and then identify the
the summer vacation season in Europe, when many European observables associated with each key activity. These
decision makers would be on vacation. In addition, the observables are the high value targets for C&11 operations,
Soviets used a ruse to gain control of the main airfield since by managing an opponent's collection of these
outside of Prague, sending the landing control party on an observables, the deceiver exerts control on the basis of the
Aeroflot flight dressed as tourists. The "tourists" easily victim's perceptions. In order to understand how
overpowered the Czech control tower personnel and then perceptions can be managed, it is therefore necessary to
proceeded to handle the landing of the aircraft carrying the begin by identifying the sources and methods used to gather
leading elements of the invasion force. intelligence data (see Figure 3). Identifying the targets of

The Soviet invasion of Afghanistan (6 J is a good
illustration of how the Soviets were able to achieve the CTION
same end-control of the captial city airfield - while varying ISCIPUINKE t -
the means. This time the Soviets flew in the airfield control SENSOR
party weeks before the invasion as reinforcements for !- . -'" :
Soviet units already deployed there since September, thus
arrousing no curiosity. The Soviets then disarmed the AIRBORNE 0 0 * 0 • O:
Afghani armored forces by recalling the Afghan ammunition AIRBORNE DETECTION
and anti-tank guns for inventory, some of their tanks for -- /
winterization and others for the repair of defects. Although AIRBORNE IMAGING 0
western intelligence was not surprised - the US had warned ATTACHE
the Soviets twice against intervening in Afghanistan-the -

Soviet choice of Christmas as the invasion date meant that CASUAL 0
any Western reaction would be delayed as the leaders DEDICATED .
hurried back from their vacations. The surprise achieved
against the Amin government is reflected by the ease with FIXED SITE ACTIVE 0 "_--'
which Soviet divisions occupied the country. FIXED SITE PASSIVE 0

In its initial stages, the Soviet reaction to the internal MOBILE ACTIVE .
political events in Poland were similar to those of 1968. (7] MOBILE PASSIVE 0O -"--
A long series of large-scale military exercises were held in -
the western military districts, the Polish premier visited OVERHEAD 00 • • • ..
Moscow, and no immediate invasion occurred. US and OVERHED DETECTION O
A'ATO intelligence recognized the clear threat of ,-- " --

intervention behind the exercises, and exerted diplomatic OVERHEAD IMAGING [ 0
pressure upon the Soviets to allow the Poles to settle the SUBSRFACE - - - -

party-union conflict. The nature and timing of the coup in
December therefore caught both Solidarity and the US and SURFACE 0 0* 0 0 0
its Allies by surprise. Again the Soviets chose a time SURFACE FIXED SITE * O
(Sunday morning during the Christmas season) when opposing I I I
decision makers would be at home, and an unexpected SURFACE MOBILE SITE 0 I.-
means-the Polish internal security forces. The intended-------- --
victims of the deception were successfully deceived even
though quite sensitive to the possibility of deception. The FIGURE 3 COLLECTION DISCIPLINES AND SENSORS
exercises were widely perceived as a cover for the Soviets'
true cout ;e of action, but this knowledge did not result in
correct assessment of Soviet intentions. C&D involves a "reverse engineering" process (see

Figure 4). We know how individual collection sources and
In each of the cases sketched above, a great deal of disciplines can be exploited by an opponent in a general way,

information indicating the true Soviet courses of action was and we know which disciplines are employed to collect given
available. The tactica! observables of the Soviet ohse-vable. By matching collection means and C&D
preparations were collected. The capabilities of the forces methnds pairs to the association of collection means and
involved we;e known as was the general intent. In each observables, we c-n construct a C&D matrix for each key
case, however, the Soviets succeeded in deceiving their activity. Figure 5 presents a sampl, C&D means matrix for
victims as to timing and method. This series of successes one possible key activity-the deployment forward of a
makes the development of e-m countering techniques, technical unit (such as a bridging unit). Large scale
discussed in the next section, a necesscry part of any effort deployment of such units would be required prior tv the
to improve the performance of our own intellgence system. initiation of hostilities. Each row in the matrix summarizes

how the observable within a particular collection discipline
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FIGURE 4 DEVELOPING TECHNIQUES TO COUNTER C&D: IDENTIFYING VULNERABILITY

ACTIVITY TO BE CONCE-AtED OR SIMUATED: DEPLOY TECHNICAL UNIT FORWARD

COVER & DECEPTION MEANS

ACINT *SIMUJLATE SOUND OF VEHICLES90 1
COLONT *MAINTAIN NORMAL LEVELS OF COMMUNIICATIONS AT GARRISON LOCATIONS TO MASK MOVEMENT OF UN4ITS

.- MAINTAIN STRICT COMMUN..ICATIONS SILENCE BY THE MO.G U.ITS

EUINT *STAG3GER RADAR CHECK-OUT BEFORE DEPLOYMENT TO SIMULATE NORMAL. ACTIVITY
-MAINTAIN NORMAL LEVELS AND TYPES OF RADAR ACTIVITY IN GARRISON AREAS

IIIMINT -RELEASE COVERING IDPLAJIATION FOR ACTIVITY (E.G., ID(ERCISE X#IOJICEENT, TROOP ROTATION)

IINIT eDEPtjj THR~OUGH AREAS WITH HIGH LEVELS* OF BACKGROUNHD HEAT (UREAN AREAS, kMAO ROADS)
:DEPLODY TPMOLGH AREAS WHIICH ABSORB IR EMISSIONS

_______ SIMUJLATE NORMAL GARRISON ACTIVITY WITH NONESSENTIAL VEHICLES

OPINT *CAMOUFLAG-E DEPLOYING VEHICLES AS NON-MILITAkY
eSIMULATE ESSENTIAL VEHICLES IN GARRISON WITH NONESSENTIAL ONES
S*MOVE AT NIGHT

PIIOTINT *SIMUL.ATE ESSENTIAL VEHICLES WITH DUMMIES IN GARRISONS

VISINT *DIVERT FOREIGN OBSERVERS FROM4 DEPLOYMENT ROUTES
*:ALL.CSiOSERVERS TO SEE STAGED ACTIVITIES ELSEWHIERE

FIGURE 5 EXPANSION OF SAMPLE MEANS M4ATRIX

149

"---:- .._...



could be simulated. The more elaborate the deception, the disciplines may be greater than the effort required by the -
greater number of these methods would be employed, and activity itself.
the larger the number of units simulated.

Analytical Techniques
Uncovering C&D depends upon discovery of

inconsistency. The Soviets are likely to apply their military Beyond current collection -and exploitation the
doctrine to C&D operations, in that they will strive to intelligence analyst can uncover a C&D operation by
achieve consistency with the least effort comparing current activity with the knowledge base of an
necessary (economy of force), and with integration of C&D opponents capabilities and options. These comparisons are
operations in all domains (interworking). To counter C&D intelligence cross-discipline consistency checks, in. which
therefore means to progress from line items in the means current intelligence is matched with basic intelligence on
matrix to correlation of line items in the matrix, and then the one hand and threat assessment on the other.
to the higher levels of the inJications structure, as well as
to other intelligence disciplines (for example, the order of Basir intelligence provides the analyst with a reference
battle). This search for inconsistency takes place on three of what an opponent can do. This includes the physical
levels, each demanding a higher level of man (or machine) capabilities of equipment-can a mobile rad:-r deploy from A
intelligence: to B in a given time? In addition, it provides an

organizational and doctrinal reference for current activity.
* Single collection discipline These are particularly useful in evaluating the activity of
* Multiple collection disciplines the Soviet military, which has minimi7ed organizational
e Analytical procedures involving one or more variations and which does not encourage deviations from

intelligence disciplines standard operating procedures. A simulated SAM battalion,
for example, must include the correct number and relative 9

Each technique, properly employed, should stretch the )cation of radars, launchers and communications
deceiver's web of consistency in the observables harder, equipment. From the organizational and doctrinal
until finally it gives way. standpoint, it must be co-located with one of a limited

number of other types of units. Discrepancies in any of
Single Discipline Techniques these factors becomes the basis for requests for additional

collection, and for expanding the scope of the analytical
Single discipline techniques address the weaknesses in evaluation.

the collection and interpretation chain, and can be divided
into two types; Once the time and space relationships between

indicators and an opponent's likely courses of action! have
"* bringing the target into the field of view and been established, these can also help uncover a& C&D
"* increasing target discrimination, operation, and can also help the analyst recognize when the

actual course of action does not match any of the
Success in either of these can be achieved by improving hypothesis. One of the major benefits of the structured

either the sensor capabilities, the exploitation processing, or warning systems is that the analyst can be alerted to the -
even by alerting interpri ters to the likelihood of a inconsistent absence of activity. This absence could occur
particular C&D method, under any of the following conditions:

As an example of the application of these techniques, 9 the activity is present, but is being covered
consider an enemy attempting to deploy SAM units forward, * the activity not present, and the other key activities
and attempting to cover the radar emissions. He may try to are being staged
keep them out of our ELINT field of view by restricting the * the activity is not present, and the other activities
time and power of his emissions. They would be brought are part of a course of action outside the current
into the field of view by expanding the duration of coverage, range of hypotheses
or by deploying more sensitive sensors. This affects both
the enemy's ability to avoid coverage, and his ability to The analyst can identify which explanation applies by
remain undetected in the presence of a collector. The increasing collection and exploitation effort to uncover
enemy might also seek to cover the mass deployment of activities if it exists. If it is not found, solutions must. be
radars forward by testng them individually, so that the sought along both collection and analysis paths.
overall level of SAM radar ictivity in a given area does not
change. This can be uncovered by increasing the ability to In the collection/interpretation domain, increased
discriminate among the radar signals of different units with effort would be applied to determine if some of the
the same types of radars. observed activities are actually simulations. At the same

time, the threat assessment process needs to reevaluate
Multiple Discipline Techniques whether the absent activity is a necessary part of a course

Multiple discipline techniques seek to break down of action, and whether a new hypothesis would be consistent
inconsistencies between two or more observables associated with the current combination of active and inactive
with the same key activity. The first step in applying these indicators. The discovery of C&W operations during this
techniques is to take advantage of thE means matrix to process has an additional value in that their existance is .f.
identify the opportunities for multiple disnipline itself an indication of an opponent's course of action.
correlation. There follows a determination of whether the "
current collection schedules for the sensors involved allow Conclusions
simultaneous coverage. Planning for such coverage
increases the burden of activity required to maintain a Current collection, exploitation and intelligence
deception. Finally, the analyst's ability to make effective analysis systems are vulnerable to cover and deception.
use of multi-source coverage requires that t'at the This vulnerability has increased as analytical aids have
interpretation of the coll:ctior be organized by activity, tended to focus on the observables associated with the key
For the radar in the abov,- example, therefore, the analyst steps for a limited range of courses of action. Soviet
would be given the PHOT*0NT, ELINT and other coverage for doctrine, with its emphasis on surprise and continuing
a particular area over a specified time range. Multiple variations in the means of realizing surprise, is ideally
discipline techniques make cover difficult at the tactical s'iited to exploit those limitations, and they have been
level, and make simulation extremely difficult, since the uniformly successful in applying this doctrine to the present
effort required to simulate an activity in many differnt day. Both current analysis aids, which are essentially
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production systems, and the expert systems now under
development [8 ]are basically similar to commercial systems
developed for medical, geological or engineering
applications. (9] For successful application to military
intelligence, the technology must be "hardened" to
withstand the skillful use of Cover and Deception.
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I. Introduction and Susmary One algorithm has the advantage that it
introduces no more delay into the target detection and
tracking process than is forced by acoustic

SA DSN is a surveillance and tracking system propagation. But at one measurement time, it usually
employing many geogr~hically dispersed estimates the positions for different targets at
sensor/processor nodes connected by a computer different times. Over a regular sequence of
commnications network and implemented as a measurement times, it usually estimates the position - .
confederacy of identical autonomous cooperating of the same target at irregularly spaced times.
processes.,. The general properties of a DSN are being
investigated through the development and exercise of a The other algorithm form estimates at each
test-bed system. The detection and tracking of measurement time with a specifi-ed delay which is
low-flying aircraft using simple acoustic sensors has uniform for all targets. The product of the delay and
been selected as a specific problem to be addressed, the speed of sound is the maximum range at which
Each node in the test-bed- consists of an array of targets can be tracked, so that delay is usually set
microphones as the aensor, several small computers for equal to the sensor detection range divided by the .
data processing, and a digital radio for communicating speed of sound. On the surface, the generally larger
information between the nodes. Use of microphone delay of the latter algorithm make& It appear
arrays as sensors limits each node to measuring target undesirable. However, the irregularity of estimation
azimuths; nodes must exchange target azimuth times produced by the first algorithm so complicates
information in order to track target positions, further data processing as to make it even less

attractive.
A DGN need not be as simple or as homogeneous ao

the test-bed. It can mix sensor types such as radar The microphone arrays used in the test-bed have a
and passive IR, putting one type or both at any node, detection range on the order of 5 to 10 km and the
Data processors need not be colocated with all iensors radios have a similar range, Thus, no one node can
and vice versa. Data processing capacity can vary measure a target's saimuth for very long. This
from node to node and communications capacity can vary difficulty can be overcome if each node's azimuth data
from link to link. The comunications network can mix is distributed to every other node. But to do so
broadcust radio, point-to-point radio, and wire. But would be difficult in a large DSN, producing heavy
it is our opinion that all of the significant communications traffic and requiring much redundan-
DSN-related technical issues which must be addressed data processing in each node. The least distribution .
in developing b6ach complex systems must also be practical, broadcast of azimuth data only to nodes in
addressed in developing the test-bed system and that direct radio contact, is done in the test-bed so as to
the relative simplicity of the test-bed helps focus hold down communications traffic.
attention on those DSN-related issues.

Only azimuth data is now exchanged by the
paper describes the acoustic tracking test-bed nodes. Because this data is exchanged only

-- algorithms currently used in the MIT Lincoln between nodes in direct radio contact and because the
Laboratory (HIT/LL) Distributed Sensor Networks (DSN) radio range is comparable to the sensor range, each 0
test-bed. It discusses the original motivation for node has sufficient Information to track the positions
inclusion 6f various features in those algorithms and of targets within its sensor coverage. This
the lessons learned about those features through restriction impacts target position tracking by
experimentation with real and simulated-data. Plans individual nodes only in the area of track
for modifications to the detection and tracking Initiation. As a target moves through the DSN, each
algorithms are briefly sketched. - node must acquire the target as it enters the node's

sensor coverage and initiate a new position track for
Acoustic propagation introduces delays in azimuth the target despite the likely existence of position _

measurements which complicate the merger of target tracts for that target in other nodes. This
azimuth information into target position estimates, restriction also has a major impact on the
At any one measurement time, each sensor measures sureillance function of the DSN as a whole because
target azimuths that correspond to different times in ind..vidual nodes have a myopic view of the targets
the past, depending on target-to-sensor range. A node within the coverage of all the DSN's sensors.
cannot estimate target position from just the most,
recent measurements because they correspond to Intuitively, exchanging position tracks as well
different target positions. Each node must maintain a as azimuth data between nodes in direct radio contact .
hitory of past sensor measurements in order to track should allow target position tracks to be handed over
targets. Two algorithms have been developed for ijtsteed of reinitiated. And more extensive
estliating target positions from histories of sensor communication of position tracks should allow
seasurements produced by two or more nodes, formation of a complete surveillance picture. But it

is not yet clear how to combine, in a statistically
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valid manner, position tracke formed in different its effe4tive nonceusality; a measurement by one ,
nodes using sensor data which is not all exchanged. sensor may be made later than a measurement by another

Recent research has exasdned related, simpler sensor but may contain Information about the target
problem, and suggests that this difficulty is state at an earlier time in the target's frame of
surmountable. However, the applicaLlility of the reference.
research results needs further study.

Target azimuth data most be accumulated over time

II. MIT/LL DSN Test-Bed in order to form target position tracks. The first
step in this accumulation is target azimuth tracking.

Figure I shows a simple block diagram of one DSN The azimuth tracker in each node is quite
test-bed node as well as photographs of a microphone conventional, with the exception that it does not

array and a mobile node vehicle carrying the estimate the unobservable present target azimuth
associated computers, radio, and their power supply. angle but rather the observable 'acoustic" azimuth
Atmospheric conditions limit the maximum range at angle. The tracker uses a two state (azimuth angle
which typical targets can be detected to between 5 and and azimuth angle rate) r-0 tracking algorithm for
10 km. The test-bed radios, currently under estimation and prediction. Data association is done

construction, will typically be limited to a similar quite simply. A measuzement is associated with an

range by line-of-sight propagation. Thus, each node azimuth track and used to update the state estimate if 7.

communicates directly with thoe rnodes having the azimuth angle lies %ithin a window about the
overlapping sensor coverage and only those nodes. The filter's azimuth angle prediction for the measurement
radios are also designed to measure the range between time. Only one association is allowed per track or
nodes, allowing the test-bed to estimate the relative per detection. Should a measurement fail to associate
locations of Its nodes as indicated in the figure. with any existing track, it Is used to initiate a new
Until the packet radios ar, available, broadcasts are track. A newly initiated track is terminated if no
simulated using wire comunications,. measurement is associated with it at the next

measurement time; any. other track is allowed only one
Figure 2 expands the tracking block In Figure I missed data association in a row.

and includes, for reference, the microphone array and
the signal processor. It shows all of the data flows Full azimuth trAck state estimatek are maintained
in the detection and tracking system, including those within each node for the targets sensed locally but
between nodes. The data flows are complex but, as only the azimuth component is broadcast to other
will be seen, the complex flows are necessary. The nodes. The azimuth components computed locally are
data from each microphone array is processed everi two also added to the node's azimuth history data base .
seconds using adaptive, nonlinear filtering

1
- to alongwith all azimuth components received from other

detect local maxima of the incident sound power nodes. Each azimuth track created by a node 14 given
(averaged over the preceding two seconds) in frequency a unique (within the node) identifieL which Is
and azimuth angle. A measurement of each detection's broadcast with each =im..th component. This tagging
frequency, azimuth angle, and average sound pressure allows asimuth coiponents broadcast at different times
level is produced in the process, but based on the s•ae animuth track to be associated.

Figure 3 sketches the organization of the azimuth /
The detections and measurements are made over a history data base. It is tree-structured, with the

four to five octave frequency band. Such broad data sorted by originsting node and azimuth track.
bandwidth allows detection of multiple harmonic
emissions by a single target. Sensor data Only the data in the azimuth history data base
conditioning is done to reduce tracking computational lamsed in further processing. The effect is to treat
load by clustering together detections which could the each node's sensor, signal processor, sensor

plausibly have been caused by a single target and by conditioning, and azimuth tracker as a virtual sensor
discarding detections which are relatively weak In with the measurement properties of the whole chain.
sound pressure level. Each cluster is characterized Each node can be thought of as connected to a number .
by the average azimuth angle of the comp3nent of such virtual sensors, one at Its location and Lhe
detections (weighted by sound pressure level) and by others at the locations of those nodes with which It
the total sound pressure level. The average azimuth has direct radi4 contact. This artifice helps
angles are treated as target measurements thereafter, modularize the 'tracking system, decoupling details of

the sensor, signal processor, etc., from the remainder
Acoustic propagation variability makes incident of the tracking system.

sound pressure level a second-order measure of target
range; the sensors are primarily azimuth-only The remainder of the tracking system must form .
measurement devices. Thus, the full target state is estimates of target dynamic state (position and
not observable using a single sensor and no node can velocity) from these virtual measurements of aicouet',
accurately estimate it without information from other azimuth. The process is done in two steps at each
nodes; the nodes must share measurement information to node:
form or estimate of the full target state.

,)Estimate target positions from acoustic
Low-flying aircraft can travel at an appreciable azimuth data in the azimuth history data

fracrwIon of the speed of sound and even exceed it in base, and 0
some cases. As a result, the sensors measure target 2)Estimate target dynamic states from the
azimuth angle not at the measurement times but at the estimated target positions.
times when the measured sounds were emitted. Target
azimuth angles corresponding to present target Azimuth histories can be combined in two ways to
positions are not observable. The lack of produce position estimates. The current tracking
observability prevents the direct application of system uses the reflection algorithm

4
'

5
. The

familiar tracking techniques, including the Kalman algorithm takes as inputs two azimuth histories
filter, which update target state estimates using originating frosa different nodes and the locations of _
current measurement data only. Further cooplications those nodes. If the two azimuth histories could
are the nonlinearity of the measurement process and plausibly be associated with a single target, the .'-"-

algorithm estimates the p Ittom of that target for the "
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emission time o' tý1 %ound just detected at the node unnecessary. Each wode would (in the absense of
closer to the tarL \ position estimate produced by communicatiors failures) have identical azimuth
the algorithm can be regarded as a "measurement" of history data bases and produce identical target
the target's position, delayed in availability position estimates and position tracks. But complete
depending on the target's range from the sensor. The connectivity is not practical in large DSNa; thus,
delay is the least achievable with any position arimuth history data bases typicaliy differ from node

estimation algorithm; it equals the shortest to node and so must the position estimates and
propagation delay in the current azimuth measurement position tracks based upon the azimuth history data.
data. Each node then has an incomplete picture of the

targets in the DSN's coverage. This point, is
In each node, the reflection algorithm is applied illustrated in the next section.

to all legitimate combinations of azimuthhistories.The resulting position estimates for Exchanging target position es timates or position '.:'•".

different targets are for different times. The times tracks could provide ,odea with additional
can range from the most recent measurement time (for information, but consider an extreme example, of wat -- '
targets overflying sensors) to 30 seconds earlier (for can go wrong if target s.ate estimates are not
targets 10 km. from -he nearest sensor). Because properly combined:
target-to-node range varies with time, so does the
delay for a single target's position estimates at A local state estimate a in creat-4 in data
sequential measurement times, even if the estimates processor A from a single measurement by one sensor.

are based on the same pair of azimuth hiistories (same That estimate is shared •dth data processor B, which

nodes and track identifiers) at sequential measurement uses it to create an identical local state estimate,

times. B. Data processor 3 shares its local state estimates

with data processor A, including S. Data processor A .

The variable times associated with target associates local state estimates m and B with the same

position estimates produced by the reflection target and. combines them to produce local .tate

algorithm complicate the process of building position estimate I with half the variance of m and B. This

tracks from position estimates. Consider a target process could ultimately lead to the existence in data

which is tracked simultaneously by th-ee test-bed processors A and B of A local state estimate. w of

nodes and assume that each node is within radio range inifinitesimal variance based on a single sensor

of the other two. Then each node contains three measurement.
azimuth histories corresponding to the target. 6
Applying the reflection algorithm to each pair of Given the complexity of this issue, the decision was
histories would typically yield three different made to limit the initial version of the test-bed to

positon estimates, each for a different time. It is exchanging only the azimuth components of azimuth

very difficult to recognize that all of these pnsition tracks and only between nodes in direct radio

estimates correspond to the same target, even if the contact. Later. versions of the test-bed will
azimuth histories are completely accurate and if the experiment with more extensive data exchanges.

reflection algorithm introduces no inaccuracies. -
IIi. Tracking Performance

For this reason, position tracks are currently

formed only from position estimates based on All of the results shown in this section are for

particular pairs of azimuth histories., i.e., for the one field experiment
2

,
3 ,

6
. Four test-bed nodes were

same pair of nodes and azimuth track~s within those used to record the passage of a UH-1 helicopter .. .

nodes. To facilitate this isolation of position west-to-east along the flight path illustrated in

tracks, they are kept in a tree-structured data base Figure 5 at a ground speed of roughly iS knots and at

organized like the azimuth history data base. In this roughly 1000 feet abrve ground level. The letters F, Fla -

case, entries are sorted first by the originating pair H, J, and L indicate the locations of the four nodes. - .

of nodes and then by the pair of identifiers of the The circles indicate checkpoints used bv the

originating azl-th tracks (see Figure 4). Position helicopter pilot to maintain his flight path and by

track data base entries consists of a time and observers to time the helicopter's passage. -"- -

estimates of target easting, northing, east velocity,
and north velocity at that time, plus some auxiliary The runwaya overflown near checkpoints 3 and 4
information, are Hanscom Field, a busy military and civilian

airfield. Under checkpoint 6 is Route 128, a heavily

A position track is updated when a new position used eight-lane superhighway. Another major highway, •

estimate is produced for the pair of azimuth tracks Route 2, lies just south of the area shown on the

histories upon which that track is based. A new map. Normal activity at Hanscom field provided

position track is created if no entry exists in the additional aircraft in sensor coverage during the

data base corresponding to an azimuth track pair which txperiment and 3ormal activity on Route 128 provided

passed the reflection algorithm's test. A a-S an extended and irregular interfering sound source.

tracking algorithm is again used for prediction and Construction vehicles and stationary mechanical

estimation. Azimuth histories are not completely equipment operating near the microphone arrays also
accurate and the reflection algorithm can amplify provided acoustic interference. S

those inaccuracies. The resuLting position estimates
can be inaccurate not only in position but also in Figure 6 is an azimuth-time intensity plot for

time. For this reason, position estimate times are the output of the signal processor at node F. The
smoothed before the a-8 algoritcm is applied. The plot only includes those measurements at each time
auxiliary information in each position track data base having a sound pressure level within 10 dB. of the

entry is the state of the smoother for that position maximum value at that time. The curves overlying the

track, measured values are thb sequences of azimuth
components of the azimuth tracks produced when

Neither target position estimates nor position processing the data. Each contiauout curve

tracks are exchanged between nodes in the current corresponds to one track. Because of breaks in the

test-bed. If the nodes are all directly connected by measurement data, several distinct tracks (having . ,.

radio to each other such an exchange would be distinct track identifiers) are caused by each sound

source.
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The curve marked "TRACK" is the track of the UH-I 30 seconds for the test-bed. For a target very near a
telicopter, which reached its point of closest node, the possa'iOe position algorithm cause a delay
.pproach at roughly 240 seconds and was roughly 600 nearly .as large between detection of the target by
oeters from tle microphone array at that time. Two that node's seneor a&d the creation of a corresponding
,ther sound sources were track,.d: a fixed-wing position estimate. Lesser delays would occur for
tircraft with a varying azimuth angle ani a bulldozer target& further from nodes. Since targets are
rith an essentially constant azimuth angle (due typically first detected away from all nodes and are
iouth). The "speckles" on the plot are signal well in track by the time they are close to any node, S
,roscesIng artifacts or very intermittent sound this disadvantage is probably lees .ignificant than it
ources. Such artifacts or sources are detected appears on the surface.

tnformly over time, but are suppressed by the sensor
lata conditioning process ;arly in the plotted data The availability of position estimates are
Pecause of a relatively loud target near the sensor, regular and comaon times should allow significant

simplification of the position tracke.r. Location
Figure 7 shows the position tracks formed using estimates plausibly caused by the same target could be

ipdated azimuth estimates calculated in node F (shown clustered together in the same manner as are azimuth •
ý1, the previous figure) and in node H. Each cross is measurements produced by the signal processor.
:he position cosnonent of a niewly updated position Entries in the position track data base would not a,eed
:rack. Thin lines connect sequential position to be sorted by originating azimuth history pairs and
-omponents of individual position tracks. The line more u:ual data association could be done. Smoothing
aa-.ked "TRACK" is again the track of the UH-I of the position estimate timec would be unnecestary,
ielicopter. That track is crossed by another, that of el.amnating this potential source G1 error.
:he fixed-win, aircraft. The other tracks are of Experiments using the possible position algorithm for
intermittent sound sources or are processing target position estimation, and the simplified
artifacts, e.g., "ghost" tracks based on erroneous position track data &ase and tracking algorithm it
)airings of azimuth track histories which manage to allows, are planned to evaluate the trade-offs between
.ass the reflection algorithm test. The short, dense timeliness and complexity of the two algorithms.
track radiating from node R Is a "ghost". Ghost
tracks can often be recognized because they trace out The limited sharing of information between noes"
physically unreasonable trajectories, beginning or in the current test-bed does not interfere with
ending at a node or involving unrealistic position tracking by Individual nodes. But it
accelerations, prevents nodes from "handing over" target position .

tracks as the targets pass through the DSN'a sensor
Recording of the measurement data allowed coverage and can cause each node to have a myopic view

sxperimentation with different connectivities between of the targets in the DSN's overall sensor coverage as
the nodes. Figure 8 shows the position tracks formed illustrated in the previous section. Results of
in node J when it received azimuth data broadcast only recent research9, 1 0  

into related problems suggest
by nodes H and L. The figure includes distinct but that it should be possible to form a complete
overlapping tracks of the UH-I helicopter, each surveillance picture in each data processor if each
derived from a different pair of azimuth histories, one transmits locally computed target state estimates- .
Note that node J has an incomplete surveillance to other data processors and if each uses the state
picture. It does not include the track of the estimates it receives as well as available raw sensor
fixed-wing aircraft which appears in Figure 7. The data to update Its local tar.et state estimates. But •
latter track was based in part on azimuth informs' on the research re ults demonstrated only asymptotic
sensed at node F; information unavailable to node J in convergence of estimates of an Invariant quantity. We
this case. must examine this work carefully to extract clues as

to the proper organization of algorithms for our more
IV. Lessons and Plaits complex situation. At the very least, we would like

to develop an ad hoc algorithm for cosibining state
Use of the reflection algorithm for target estimates for the purposes of position track hand-over

pot;ition estimation has the advantage of producing the that exhibits minimal pathological behavior.
moat up-to-date position estimates possible. But it
has the disadvantage of producing position estimates The need to demonstrate a system which perfores e
with time-varying delays, making it difficult to satisfactorily in a realistic environment will
recognize position estimates associated with the same continue to drive the development of the Lincoln
target. A consequence Is the overlapping UH-I Laboratory DSN test-bed tracking system. In parallel S
position tracks in Figure 8. Location estimate time with the development of new t acking algorithms, data
smoothing uss required in the position tracking will Le -ollected on actual sound sources in stressing
algorithm as a consequence of inaccuracies in the environments such as crossing targets on known
time-varying delays. Experiments using simulated trajectories. Regular experim~ntation with such datameasurement data with no azimuth measurement focuses development of the hystem on significant
inaccuracies has revealed that this smoothing process problems, providing a startingl point for theoretical
by itself produces some inaccuracies in the position investigations and a timely test of any ad hoc or
tracks. These observations have led us to question approrimate sapects of the systeim.
whether the advantage of the reflection algorithm is
worth the disadvantage. References
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SIRetearcb in distributed estimation has progressed

ABSTRACT along sevwral directions. A team-theoretic approach

has been taken by Bart& [31 for decentralized linear
"I"" this paper.wve consider-the distributed estima- estimation and by Tenney and Saudell L41 for distri-

tion pr•llem by a aet of agents connected by an arbi- buted detection. Extensions of this work in detection
trary communication network. The agents communicate have been made by Tenekettis 151 and Ekchian and Tenney
"conditional probabilities of the rfadom state over the [6]. Another approach, based on finding constrained
network. From these conditional probabilities, each decentralized filters, has been taken by Tacker and

AN agent then cries to re-construct the conditional proba- Sanders [7]. The approach of fusion or combining of
bility given all the measurements if these were commun- local estimates to recover the globally optimal esti-
"icated instead of the probabilities. It is discovered mate has been used in 181 to 1121. TLe lintar problem

- that in general the agents have to remember some of the was considered by Speyer [81, Chong [91, Willsky et al.
past conditional probabilit.es and may even have to [10] and Levy et al. [ill while Castanon and Teneketzis
request additional information. A method for generat- [12] considered the nonlinear extension. In all of the

4. ing the fusion algorithm for each agent based on the above [81-111], the system structure is hierarchical
- network structure is presented and applied to some with no feedback communication or coordinution from the
* examples. The results are applicab:i to both dynamic fusion agent. Similar problems of this type have also

and static states. been considered in the sinagement science literature
[13].

S1. I•TRODUCTION
The network aspect in the distributed estimation

. The traditional approach to estimation has been problem has been the emphasis in 114), 1151 and dis-
centralized. Even though the measurements are gen- cussed in (21. Borkar and Varaiye 1141 presented
crated by a large number of sensors, it is usually results on the asymptotic agreement among agents forS assumed that they are sent to a central site where pro- estimation while Tsitaiklis and Athans [151 considered
cessing is carried out by one agent (computer). In asymptotic agreement for more general decision prob-
this context centralized estimation theory is well lems. It has been demonstrated in (21 via an example
developed and has founu applications in many real world that agreement may not be desirable since the common
problems. conclusion may be wrong.

In recent years, there has been growing interest In this paper, we elaborate the results obtained
"in distributed estimation problems. In such problems, . in [2]. The philosophy of fusion or combining of local
the sensor measurements are not all transmitted to a conditional probabilities to obtain the probability
central processor. Instead, a set of local processors, conditioned on all available information is again used.
which we call estimatioa agents, are present. The However, arbitrary network structures are considered
agents are connected by a communication network. Each explicitly. They may be hierarchical with or without
agent collects the measurements from a subset of the feedback from the higher level or fully distributed.
sensors, performs some local proceasing, and communi- The presentation is at a fairly elementary level to
cates the results with other agents. simplify the notation but can be made more sophisti-

cated if desired by introducing sigma fields. The
SThe advantages of such a distributed estimation results may provide the theoretical basis for the

system are many. It is mote reliable (or less vulner- analysis and design of systems such as the distributed
able) since there is not a single central site which is sensor network.
responsible for the proper functioning of the system.
Communication is cheaper since only the results of pro- The rest of this paper is organized es follows.
"cessing, and not the raw data, are communicated. In Section 2, we present the model to be used for die-
Furthermore, each distributed agent has the use of the tributed estimation. Section 3 describes the distri-
processeo data locally and does not have to wait for buted estimation problem. Section 4 describes the

* communication from the central processor. From a tech- basic results for static random states. A method for
nological point of view, such distributed systems are generating the fusion furmula for arbitrary networka is
made possible by the availability of cheap computing given. The fusion algorithms for some examples are
hardware. These advantages make distributed estimation also described. Section 5 extends the basic results to
systems extremely attractive for many military and the case of dynamic random states. Section 6 is the
civilian applications. One such application is the conclusion.

- distribued sensor network 11], [21 for tracking and
surveillance. 2. KODmL lOa DISU1i3UT ITmAlIOn

2.1 State and Observation Models
wThis work was suppcrted by the Defense Advanced
.Research Projects Agency under Contract MDA-903-81-C- We consider the estimation of a random process
0333. x(t), t E T where T - -t ,s) and x(t) C X. The random

process x(.) can be sttc, deterministic or a general
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Markov process. We assume the statistics which specify 3. DISTISUMtID STIN&TION P&OBLIN
the random process completely are known.

3.1 Information Graph
Let 3 be a finite set of sensors. At a given time

t in T, a sensor a generates an output or measurement a The distributed estimation system (N, S, C) thus K
in the measurement space Z . The triple (z,t,s) is consists of the sensor set S and the estimation agent
then called a data set and (t,s) is the data set index. set N together with the communication schedules. Four
Let Z be the set of all data sets and K be the set of types of events affect the change of information in the
all data set indices. If we assume that each sensor system. These events, the times when they occur and
can produce only a finite number of outputs in any fin- the nodes (sensors or estimation agents) which are
ite time interval, the sets Z and K_ are at most count- affected, are given below:
able. Furthermore, for each t i T, the restrictions
Z = {(z,t',s) Zit'et) and K - {(t',s) Klt'st) are - sensor observation: K,
Abh finite. We make two addilional assumptions: - reception of sensor data by estimation agent:

. a((t,n) f T x NI(t,s) E K, s £ Sn),
1. The sensor origin and time of each data set are - transmission by estimation agent:

known, i.e., for any data set (z,t,s) £ Z, t and a {(t,n) f T x Nl(t,n,n) I E .
are known quantities. - reception of transmission by estimatiou agent:

{(t,n) £ T x MI(t,m',n) £ e .
2. The measurements are all conditionally independent

- given the state process, i.e., for any finite sub-
set {(z 1 ,t 1 ,SI),...,. (zk.tkVsk)) of Z, Consider a subset I of T x (S U N) which is the

k union of all the sets defined above. Define an anti-
' Prob.(C) is. Edz..)Ix(t Xsymmetric and tranritive binary relation (or partial

i- i • x(tk)) ordering).4 on I such that

k"17 Prob.(fi e dzox(t)) (2.1) i. For each (n,t,t')INxTxT, (t,0)fL. (tW,n)OE"' Iand t < t' implies that (t,n)< (t',n);
-i. (ts) I K, s f S and (t,n) f L implies that(t,•) 4 (t,n);

With the second assumption, the observation process can iii. (tn~n') 4 implies that (t,n) 4 (t,n°).
be characterized completely by the transition probabil-
ities (or orobability densities) from X to Z . This binary relation or partial order on I thus

satisfies all the constraints associated with perfect
2.2 Data Bases communication as defined by g as well as perfect memory

at each processing node. (L-) characterizes the
We are interested in estimation of the process by information flow in the system and is called the inzr

a network of Agents. At any time t, due to communica- wation ugraph. If all the sensor measurements (data
tion constraints, each alent may not have access to all sets) can be communicated perfectly through the comnun-
available data sets. In general, an agent will have ication network, the data base Z(t,i) for each node
only a subset of the available Z, at t, corresponding '(t,i) in the graph (L 4) can be defined by beginning
to only a subset of K, . A data Lase Z at time t is a with the minimal elements and following the rules shown
subset of Z and a data index base K at time t is a below:
subset of K . According to this definition, Z (Kt) *

is the maxiQ m data (index) base at t and 0(th•tempty i. If (t,i) is a receiving mode,
set) is the minimum. Given any data base Z(t,i) - s(sj)l(s,j) -> (t,i)};Z t . ( )), the corresponding data

index base K -((t ,sa•, 2.,tk)) is found by the ii. If (t,i) is a transmitting node,
"operation K = I.(z whore the (efinition of I is obvi- sZ(sj) if (s,j) -> (ti)U n
"vus and the actual measurements (z!..,k! are found Z(ti) - ((z(k),k)} if (ti) . k £L
S by (zl,...,zk) - M (Z). When Z n4€ I.(4) =, and 4 otherwise.
N ( ) - e where e is a symbol representing "no informs-
tion'. In the above (sj) ->(ti) means that (s.j) is an ...

immediate predecessor of (t,i) and (z(k),k) f Z is the" For each data index base K - ((tlsl),...,(tkSk)a unique element whose second component is k.
with correspoLding data base
Z - 1(z ,t/,s 1 ),...,(a ,t•,Sk)) we define the condi- With this construction of the data base, we see
tional probability P(.Tz) to mean P(.INv(Z),K) . that (ti)-< (aj) if and only if Z(t,i) 5 Z(s,j).

Similar remarks can be made for the data index uase
All the detinitions above can be given more K(t,i). Since there is a natural direction (along

rigorously in terms of sigma algebras. This will not increasing time) in the graph, the arrowheads on the
be attempted in this paper so as to simplify the edges in a pictorial representation of the graph can beS development, omitted. We would also omit those edges which are due

to transitivity. From the graph, the flow of informa-
2.3 Comunication Model tion in the system becomes very obvious. A node (t,i)

is a parent of (s,j) if information flows from node i
We assume there is a finite set N of estimation at time t to node j at time s. Note that in the infor-

agents. Each agent n has its own set of sensors, i.e., mation graph, the receiving nodes correspond to the*
a s'ibset S of S. Furthermore, thv sensor sets are events when est-mates have to be updated with theisj t fr different agents, i.e., S S . fo arrival of new information. For many applications, it

S n 4 n'. Each agent n also receives informa~ion from is sufficient to use a reduced information graph, which
other agents via communication. Comnunication among is obtained by considering only these receiving nodes.
agents is svecified by the known communication schedule
-. which is a subset of T x N x N. (t,,i 1 n2 ) 4 £ means Several examples of distributed estimation net-
that agent n1 transmits some messages to agent n at works and their reduced information graphs are shown in
time t. The exact form of the messages will be his- Figures 1-4 where the hollow circles and the solid cir-
cussed later. Cleo are the communication reception and sensor data
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reception nuder respectively. This lemma states that since p(zIZ ) and p(xIZ 2 )
both include information contained in tie data haoe

imla 1. (Fusion. Without Coordination Of the agents Z M Z., this common information ba& to be removed so

in N, agent I is a fusion agent and the rest are local tiat ii does not get double counted. Lea I plays a
agents. The local agents transmit to the fusion agent central role in distributes istimation theory similar
after they receive the data from the sensors and per- to the usual Bayes' rule in centralized estimation
form local processing. Figure I sovs the structure of theory. When the conditional probabilities from multi-
the system (for three agents) and the informetion pie agenLs are combined, the fusion formula can be
graph. obtaine" by repeated applications of Leman 1. The fol-

lowing gives the results for three agents.
Example 2 (Fusion With Coordination): This is similar
to Example I except that right after fusion, agent I Lemma 1. Suppose Z1 , ZI and Z are data bases at the
communicates with the local agents again. This struc- information nodes 1, 2 and 3. Then
ture is also equivalent to a broadcast system where all
agents communicate with each other. Figure 2 shabo the p(xJZ 2 U C p(xl IU Z2 ) p(XIZ3)

structure of the system and the information graph. I 2 U Z3  - C V Z2 )n z3)

Example (Ccic Communication): This is the example - p(RIZ1 ) p(xIZ2 ) p(xZ 3) p(xI In z2 fz 3  (4.2)
considered in [2). The agents are arranged in a circle p(xIZIln Z2 ) p(XIZ 2 An Z 3 ) p(xzZ 3 (z) 3 (1.
so that each agent transmits only to its immediate
neighbor in a cyclic manner at the specified c "unica-
tion times. Figure 3 shove the example for N = This lemma again has-a very intuitive explanation.
{l,2,3). The terms in the denominator comsist of pairvise redun-

dant information to be removed. When these are
xaml !4 (Multinath Pattern): The agents are arranged removed, all information which is cAmon to

as in Figure 4. agent I can only get information from Z 1, Z2 , and Z3 is also removed. This then has to be
agent 4 via agents 2 and 3. restored,

3.2 Distributed Fusiom Problem If all the random elements involved are Gaussian,
the lemmas above can be simplified so that only the

The problem is to compute p(x(t)IZ(t,i)) for each conditional means and covariances are involved. Sup-
node (t,i) 4E L in the graph (1.-<). Since Lhe condi- pose x is Gaussian with mean a and covariance P(O).
tional probabilities or any estimates are updated only Let 2(Y) ano P(Y) be the mean and covariance
at the receiving nodes (extrapolation is carried out at corresponding to the conditional density p(xIY). Then
the other nodes), we neea only to consider the computa- leman I becomes
tions at the following two types of nodes in the
reauced information i.raph: sensor data reception nodus Lemma IA.:
and communication reception nodes. .. '.

P(ZaU 211 - 1P(Z )I * P(Z ) - P(Z I Z)
1  

(4.3)
At a sensor data reception node (t,i), computation .-2-

of p(x(t)IZ(t,i)) is straightforward. The standard and
Bayesian update torm.la would suffice. At a communica-
tion reception node, the objective is to reconstruct P(Z IJU Z2) 1(Z1 U Z2) P(Zd) SM I F(z2)- (Z2)
p(x(t)IZ(t,i)) from t".e conditional probabilities 2)').) Z
(p(x(t)IZ(s,j))[(s,j) •< (t,i)}. This problem is the - n Z )-,-.(z z2). (4.4)
distributed fusion problem: construction of the condi- 1  2 1  2

tional probability given all the data sets which would.
have been communicatea through the network using only Lemma 2 can be simplified in a similar way. Lemsa -
the conditioual probabilities available at the prede- IA is identical to that used in (9i for deriving the

" cessor nodes in the information graph. eptimal algorithms for combining estimates of linear
Gaussian systems.

4. STATIC RESULTS
We now state the static fusion problem for each

in this section we develop the main results for agent assuming that x(t) = x for all t. The problem is
fusion for each agent i, assuming the random proceis is stated for the case when messages are received from
static, i.e., x(t) - x for all t. Since the informa- only one agent. But the extension to multiple agents
"tion from different agents may overlap, care has to be is obvious.
taken when the conditional probabilities from different

.- agents are combined. In particular, any redundant Static Fusion ProbefM-
information has to be identified so that it is not used
more than once. The following lemmas prcvide the Suppose agent i receives a message from agent j at
mechanism for doing this. In the follovi.I x denotes a time a in the form of a conditional probability
"random vector with prior probability p(x) and Z_ is the p(xIZ(s,j)). Let (t,i) be the immediate predecessor to

* set of all data sets. (s,i) for agent i. Agent i's data base then changes
from Z(t,i) to Z(s,i) - Z(t,i)U Z(r,j) where (rj) is

4.1 Basic Results the immediate predecessor to (s,j) for agent j. The
objective is to find p(xIZ(e,i)) in terms of

Ve state toe t÷lloving lemmas without proofs, some p(xjZ(t,i)), p(xIZ(r,j)) and possibly other conditional

of which can be found in 116J. probabilities defined on the information graph, i.e.,
(p(x1Z W , i')) I W , i) (ar, i)).

Lemma 1: Suppose Z, and Z2 are data bases at tvo
information nodes 1 and 2. Then We do not specify a pric-i which conditional pro-

babilities are involved except , "•ave to be condi-
""p(xZ__)_ (4.1) tional on some data base Z defines on the informationp - - p(xZ n Z graph and that they should be available through commur-

; 2 ication. The following recursive algorithm allows us

" " where C is a normalization constant, to find the set of needed conditional probabilities and
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ho% they should be combined. Examle (Fusion Without Coordination): Consider the U

fusion time s. Let t be the observation time immedi-

Alritmf2L Static State ately before a. With the information graph it is easy
to see that Z(s-l,l)f1Z(t,2) - Z(t-l,2). thus

The algorithm consists of repeated applications of
the following steps. p(xlZ(s-1,l)U Z(t,2)) - C p(xlZ(t.2).iZ(s-1 .l2 )p(xIZ(t-1,2)) :

, 1._: Since Z(t,i) and Z(r,j) are subsets of Z , By a recursive argument, we can show that

Lemma I gives p(XZ(s,l)) C (xZ(t.i)) p -.

p(x IZ(si)) p(xlZ(t,i)U Z(r,j)) i. l p(xlZ(t-l,i)) p(X•Z(s- l, )). (4.7).

p(X-z(ti) n z(rj)) ( Each term in the product contains the new informs-

tion contained in the new measurement z(t,i) of agent
i. All other information is already known to agent 1.if z (t, i) r Z (r, j) is the data base for -iome node in The fusion problems of the ither agents are similar. t

the information praph, i.e., Z(t,i)A Z(r,j) - Z(q,k)
for some (q,k) in I or if it is empty, then the algo- Examole 2 (Fusion with Coordination): This is
rith. terminates. If not, Step 2 is used. In terms of equivalent to broadcast communication. From the infor-
the information graph representation introduced in Sec- mation graph, the algorithm gives for j
tion 3,. this step is particularly simple. We start
from two information nodes (t,i) and (r,j) whose condi- p(x[Z(s,j)) = C n D(xlZ(t.i)) p(x[Z(s-l,j)) (4.8)

tional probabilities are to be combined. Z(t,i)fl n p"xitps-lji( .

Z(r,j) corresponds to the information of all those
nodes which are parents of both (t,i) and (r,j). Each term in the product is the new information con-

tained in measurement z(t,i).
fJLPL: Let {(t 1 ,k1 ), (t 2 ,k.),...} be the set of com-
mon predecessors of (t,i) anm (r,j) in the information Example J (Cyclic Communication): The algorithm gives

graph. Then for general i - 1,2,3

Z(t,i)f( Z(r,j) - Z(tl,k)U Z(t 2,k 2 ) .. (4.6) p(x1Z(si)) . C p(xiZ(t-2,i)) p(xlz(t-,[i+l]J))

Step I can now be repeated with the help of Lemma 1 p(xIZ(s-3,i)) (4.9)

(and its multiple agent version) to exprers p(xlZ(t,i)f
Z(r,j)) in terms of the conditional probabilities where (i] is i modulo 3.
p(xIZ(t.,k.)), i - 1, 2,..., and
p(xIZ(t•,k')fl Z(t.,k.)), i - 1, 2 ... , -- 1, 2, ... , Thus, in addition to the most current conditional

etc. TAe 'lgorithm{ tJrminates when all the conditional probability p(xlZ(t,l)), agent I has to remember three
probabilities are defined on nodes in the information other probabilities. Note that p(xlZ(t-l,2)) is avail-
graph or coincide with the a Priori dis~ributiona. able to agent 1 from earlier communications. This

indicates that in a distributed estimation network,

by applying this algorithm, p(xIZ(t,i)U Z(rj)) knowing the most recent estimate is frequently not suf-
. can be expressed in terms of products and ratios of ficient if one wants to recover the globally optimal
. conditional probabilities defined on intormation nodes. cetimate. In faet, it has been shown via simulation in

Each product corresponds to the fusion or combining of [21 that if a suboptimal rule of :nmbining estimates is
information whereaseach division corresponds to the used, such asI removal of redundant information. Note that in general
it is not sufficient to use only the conditional proba- p(xIZ(t,l) U Z(t,2)) - C p(xlZ(t,l)) p(xlZ(t,2)) (4.10) i

bilities p(xlZ(t,i)) and p(xlZ(r,j)) unless Z(t,i) and
Z(r,j) happen to be disjoint or there is a node (s,k) for agent 1 and similar rules for agents 2 and 3, the
such that Z(e,k) - Z(t,i) n Z(r,j). Additional condi- agents agree asymptotically. This is consistent with
tional probabilities from the past are also needed so the results on asymptotic agreement in distributed
that the redundant informatior in Z(t,i) and Z(r,j) can estimation as given in 1141. However, the agents can

be identified and removed. convergu to the wrong estimate as demonstrated in [21.
Thus, although optimal fusion algorithms are iu general

We have thus solved the fusion problem for each more complicated, requiring more memory and more compu-
• agent in a distributed estimation network. This algo- tation, they are nonetheless necessary it good perfor-

rithm also provides us with the set of conditional pro- mance is needed. A sabo&timal algorithm has also been
"* babilities which needs to be stored at each agent plus tested in [21 and shown to hove some nice properties.

the additional set of conditional probabilities which
needs to be communicated. Example 4 (Multipath Pattern: The fusion problems of

agents 2 and 3 are straightforward. Znr agent 1,
When the random elements involved are all Gaus- repeated use of the algorithm (with the ýelp of the

sian, the sufficient statistics for the conditional information graph in Figure 4) gives
probabilities become the conditional means and covari-
"ances. With the help of Lemma IA, we can again apply p(xtZ(s,I)) - C x p
"the algorithm. Insterd of multiplication and division L(xlz (-2,4)
"of probabilities, howe.er, we now have operations n(xZ( p(xZ(tl)) (411)
involving conditional means and covariances. The
results are straightforward and will not be presented In addition to the conditional probabilities from
here. agenta 2 and 3, conditional probabilities by agent 4

are also needed, These would have to be relayed by
4.2 Static Ixamples agents 2 or 3.

In the following we assume the measurements are In the above examples, general fusion formulas are
"sada at times I..., t-1, t+!,...) and messages are given. If the random vectors are all Gaussian, these
received at times (..., a-1, sel,...} with s-I < t < s. formulas can be simplified using Lzmna IA.

161



r r r .e r, -o - -. - . . . - - - • . • -. ' ° . , .. ..-

5. DYIRUIC RUSULTS Then for a deterrinistic rando, process x(.), equation
(5•.5) holdu with x replaced by x(t*), where

Assume now that x(.) is a Markov process. The
fusion problem for each agent will now be considered. t- - mian{tl(t,s) C L(t,i)-((t",a")}} (5.6)
Since the data sets are no longer conditionally
independent given x(t), one immediate question is the and (t0,s")is t'he minimal element in L(t,i).
choice of an appropriate "state" whose conditional pro-
babilities would be computed, transmitted and combined The proot is straightforward and is based on the
by the various agents. Let T(ti) be algorithm of Section 4 and Lina 3. This theorem

states that t.or random processes, in general the til-
T(t,i) = {t E TI(t'.i') t K(t,i)}. (5.1) tered estimate represented by the conditional probabil-

ities p(x(t)IZ(t,i)) may not be adequate for optimal
and fusion at time t. Sometimes the agents need to have

the conditional probobilities of the states at aome
Y = (x(t*))t' f T(t,i) (5.2) earlier tames. Thus, smoothed estimates are frequently

needed. From this, the estimates of the current states
for each information node (t,i) where fusion is to be can be obtained easily by extrapolation. When this
performed. Then the problem is effectively reduced to theorem is applied to the examples in Section 4, we
a static problem of the type considered in Section 4. obtain the following results.
Using the independence assumptions on the measurements
in the data base given y, the algorithm in Section 4 Example I (Fusion withoutCoordination): In the fusion
can be applied. However, this means that the condi- equation (4.7), the state to be estimated is x(t).
tional probability of a high dimensional random vector This is consistent with the results in [81-1121. As a
y would have to be stored and transmitted. From an variatiov of this, consider a periodic fusion situation -
implementational point of view, this may not be feasi- where the local agents acquIre measurements at a higher
ble. rate than they coemmnicate with the fusion agent (Fig-

ure 5). Specifically, let the new fusion time set for
For deterministic random processes, which can be agent I be {...,s-M,s,s÷M,..,} where N is the number of

characterized by the state at one given time, an obvi- time units between communication. Then application of
ous choice is to estimate x(t ) where t is the minimum the theorem yields
in the set T. Again, due to Phe Narkovoproperty, the
conditional independence assumption is satisfied and p(x(t-M+I)lZ(s$l)) - C n D(x(t-M+l)IZ(t.i))

the algorithn ýan be used. However, if there are sub- i-I p(x(t-N+lIz(t-H,i))

stantial changes in the process, x(t ) may not be the (5.7)
state of interest. In this section, we characterize
the more current states whose conditional probabilities
ought to be transmitted and combined. Thus, the state of interest is now x(t-M-l), and each

term in the product contains the new information of
The following gtaeralization of Lemma 1 is needed, agent i about this state.

Lemma 3: Consider a random vector y and data bases Example Z (fusion with CoordivatigL): In equation
Z, and Z2 defined on the information graph. Suppose (4.8), the state is x(t).

p(Z 1 -Z 2 ,Z 2 -Z 1Z n Z2 ,y) E~x.mnle 3 (Cyclic Communication): In equation (4.9),
the state is x(t-2). Thus, extrapolation is needed if

- p(Z1 -Z 2 Iy,Z n Z2 ) p(Z2 -Z 1 y,Z 1 f Z2 ). (5.3) the estimate of x(t) is needed.

Then Example 4 (Nultinpth Pattern): In equation (4.11), the
p(yIZ1 ) p(yIZ2 ) state is x(t-1). thus, extrapolation is again needed.

p(yyIZI Z 2 C) (5.4) 6. CONCLUSION

where C is a normalization constant and A-3 denotes the We have presented a formalism for the distributed
difference of the sets A and B. estimation problem. Using this formalism, the optimal

I fusion algorithm for each agent in the network has been '

Lemma 3 states that even though the individual developed for arbitrary network structures. Both
measurements in Z do not satisfy the conditional results for static and deterministic dynamic random
independent assumptions given ý, Equation (5.4) (which states have been described, and illustrated with exam-
is the same as (4.1)) is still valid provided the ples. The results have been presented for very general
private data bases Z -Z Z2 -Z, are conditionally state and observation models. Special cases such as
independent given the siate y and the common informc- linear models with Gaussian noises can be considered.
tion Z 1t1 Z2 .' An interesting special case for distributed multitarget

tracking and classification has also been investigated
We can now state the follo ing theorem which and briefly reported in [21. The details will appear

characterizes the state vector hich should be elsewhere.
estimated for decerministic dyn ic random processes.

x I h g h e ot f nw P ram EKS"
Theorem: Consider the fusion pr blem for the informa-
tion node (ti) assuming a deter inistic random process 1. .. lacoss, ."Overview of the Disttibuted Sensor
x. It the algorithm of Section yields the fusion Networks Program at Lincoln Laboratory,'" Proc. -
formula Distributed Sensor Networks Workshop HIT Lincoln

LAb. Jan. 6-7, 1982. .

p(xIZ(t,i)) - F(p(xIZ(t*,i'));(t',i') i L(t,i)) (5.5) 2. C.Y. Chong, S. Hori, B. Tse and R.P. Wishner,
"Distributed Estimation in Distributed Sensor Net-

where F is a function consisting of products and ratios works,," Proc. 1982 Americoa ntrol Conference,
of p(xlZ(t',i'))'s in the set L(t,i), and L(t,i) is a Arlington, VA, 1982.
subset of the predecessor info r.tion nodes ol (t,i).
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OPTIMAL MANEUVER DETECTION AND ESTIMATION IN MULTIOBJECT TRACKING*

Dr. Thomas Kurien Dr. Alan Blitz Dr. Robert Washburn"

ALPHATECH, Inc.
2 Burlington Executive Center

III Middlesex Turnpike
Burlington, Massachusetts 01803

Sm4 Dr. Alan Willsky

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

1. Introduction postulated targets and utilization of the measurements .
to track the targets. The association of the measure-

The problem of multiobject tracking has been stud- ments with postulated targets can be viewed as a
ied extensively over the past few yr.ars. Good summa- discrete-valued state estimation problem. Subsequent
ries of these approaches are available in the survey to making these associations, tracking the targets
papers by Reid [1) and Bar-Shalom [21. There are two corresponds to a continuous-valued state estimation
drawbacks that are common to all the aigorithms that problem. As
have been developed and studied so far. Firstly, the
relationship of the algorithm to the optimal (Bayesian) The mudel for a hybrid system can be represented .
algorithm cannot be clearly seen due to the ad hoc and as
sometimes arbitrary approximations that are introduced
into the algorithm. Secondly, none of the algorithms x(k41) *A(k, q(k)).E(k) +1j(k, q(k)) (I)
explicitly model or account for maneuvering targets.
Several algorithms [31-171 have studied maneuver detec-
tion and estimation for single targets. However, the z(k) - C(k, q(k)) x.(k) +.n(k, q(k)) (2)
contradictory requirements imposed by maneuvers and -
clutter for the selection of gate size has prevented where S

any of these suboptisial algorithms from being extended
to the multiobject tracking problem. x represents an n-dimensional continuous- ....

valued state vector.
)--4mthis paper 4w edevmoi an algorithm V.4me-ovef-- k '

comes bo;th these drawbacks. We formulate'the multrtb---o z represents an m-dimensional measurement
jec= tracking problem within the framework of a hybrid vector.
state estimation problem. This permits the construc-
tion of the optimal srution to the multiobject track- A is an nxn matrix representing the cran-
ing problem. However, due to the exponentially growing sition dynamics.
storage and computational needs of the algorithm with,
time, some form of suboptimal approximations have to C is an mxn matrix representing the mea-
be made. Since these approximations are made within surement process.
the framework of the optimal algorithm, the nature and
trade-offs associated with the approximations can be is an n-dimensional white-noise process
examined. Furthermore, optimal and suboptimal algo- representing model uncertainty. ..- -
rithms for maneuver detection and estimation can also
be incorporated within this framework. i is an m-dimensional white-noise process

representing measurement uncertainty.
The paper is organized as follows' In Section 2

. formulate.Xhe problem of multiobjecc tracking of q represents a discrete-valued stochastic
maneuvering t!rgets within the framework of the hybrid process which take on I values.
state estimation problem. The computer implementation
of the optimal solution is discussed in Section 3. k represents the time index.
Suboptiaal featurep that reduce the computational re- S
quirements are discussed in Section 4. Finall.y, in Notice that the matrices A and C and the charac-

ClSection 5, we provide,.some simulratfi-56results. (--- teristics of the noise process are controlled by the
\ process q. Their dimensions n and m are, in general,

2. Problem Formulation and Optimal Solution dependent on time. The discrete-valued process is
assumed to be a Markov process with an Z which is also

A multiobject tracking algorithm Involves two time-dependent.
basic functions - association of measurements with

As mentioned earlier, the key features of a multi- 0
object tracking algorithm in a track-while-scan system
can be captured by this model. For example, x repro-

*This work wat supported by the Department nf the Navy, sents the composite rtate of all postulated targets and
Naval Air Syatems Command, under contract number z represents the composite vector of all measurements
N00019-C-82-0456. a-t scan k. Further, the value of q(k) specifies the
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association of measurements with postulated models functions in Eq. 6 can be obtained by computing their
through the matrices A and C. We will elaborate this sufficient statistics using a bank of Kalman filters.
in Section 3. Now the hypothesis qk represents a particular sequence

of target and measurement associations. If a system-
An optimal estimate of the state of the hybrid atic method is used to compute these probabilities in

system, represented by Eq. I using the measurements in Eq. 4, then the sufficient statistics for constructing
Eq. 2, can he obtained by computing the joint posterior the posterior probability of x(k) will be avoilable.
probability density Using this, either a Maximum-a-Posteriori (MAP) or a

Minimum-Variance-of-Error estimator can be constructed.
In the next section w3 discuss how the probabilities in

p[xC(k) qkl.k] (3) Eq. 4 can be reconstructed for the multiobject tracking
problem.

where 3. Implementation of the Optimal Algorithm

As pointed out earlier, the essential difficulty
zk - (z(), (2)....(k)) In developing the optimal algorithm lies in construct-

-- ).. zk)ing all the possible combinations, of targets with rea-

surements and then computing their probabilities. The
and combinatorial problem is even more aggravating because

of changes in Z-

qk - (q(1), q(2),....q(k)) 1. number of targets due to births

and deaths,

For most hybrid systems of practical importance, the 2. dynamic models of targets due to
transitions of the discrete-valued state are indepen-. mazenevers, and
dent of x(k).* In such cases the probability of a
particular sequence qk (which we will refer to as a '3. measurement characteristics due to
hypohesis) can be computed recursively as clutter or missed measurements.

Two approaches recommended in the past 191 have •IpfqklEk] •1 [p(E(k) jqk, zk-1) p(q~k)lqk-1. zk-1) attempted to construct the hypotheses in the form of

Cka matrix. In one of these approaches, referred to as
the target oriented approach' [11, the postulated

p(qk-lj.k-l)] targets define the columns of the matrix and the pos-
tulated hypotheses define the rows. The entries of

(4) the matrix represent measurements. Then for a given
row (hypothesis), the column numbers and the measure-

where ments in the associated columns specify the target-
measurement pairs posulated by that hypothesis. A S

.Ck represents the summation of the numerator typical hypotheses matrix is shown in Fig. 1. The '0'
over all possible qk. entries indicate that the target is not detected.

The marginal density for x(k) can •.hen be computed TARGET NUMBER

recursively from 2 3

p[j(k) fzk] P...(k)jqk, £k) pqklk) 2 3(5)
qk 

3

wee2 1 2 0where o

S3 1 0 3
p[x.(k)lqk, zk] - p(.z(k)jqk, x(k), zk-1) 4 1 0 0

- Ck'f

() 5 0 2 3p(x(k)lqk, zk-1)

R 6 0 2 0
To summarize, the solution of the hybrid-state.

estimation problem involves the computation of the 7 0 0 3
conditional density functions in Eq. 6 along with the 0 0 "
probabilities of the hypotheses using Eq. 4. This en- 8 0

ables the computation of the posterior probability of
1(k) given in Eq. 5.

Figure 1. Hypotheses Matrix for Target-
For the multiobject tracking problem at hand, if Oriented Approach

we assume that the dynamics of the individual targets
(and measurement process) are linear and t.ae noise In the alternate approach, referred to as the
processes are Gaussian, then the conditional density tmeasurement oriented approach,' the roles of the

targets and measurements are interchanged. A typical _
hypotheses matrix using this approach is shown in Fig.

*Such hybrid systems have also been referred to as 2. Here the '0' entries denote that the measurements
Event-Driven Dynamic systems or Dynamic Systems in a corresponding to those columns are assumed to be false
Switching Environment [81. alarms.
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MEASUREMENT NUMBER is born at some scan and can then die (W) at some later
scan. A target that is in the born state can have a

12 3 constait velocity (nonmaneuver state b) or bh acceler-
ating (maoeuver state H). To allow for different ac-
celerations that the target can undergo, there could be

2 3 several maneuve.' states Hi (i-1,n). This is depicted
in Fig. 3 where we have considered the case where nm-2.

2 1 2 0 For convenience' in representing the transition diagram,
* we have made the following assumptions:

a.3 1 0 3
S1. The target is always born into the non-

4 0 0 maneuver state.

S5 0 2 3 2. The probability of transitioning to any-
6 of the born states or X is independent
6 0 2 0 of the current bo.n state of the target. •

7 0 0 3

8 0 0 0 B

Figure 2. Hypotheses Matrix for Measurement- P P ..
Oriented Approach M . •(I

Both approaches have drawbacks. For example, in
the target-oriented approach measurements, not included X
in a row, could correspond to either new targets or 2
false alarms; this cannot be shown explicitly. Simi-
larly, in the measurement-oriented approach, targets - •
not included in a row could either have died or were M I M2
not detected. The hypothesis matrix cannot display it. S
Furthermore, neither of the approaches can account for
target maneuvers. -

To overcome these problems, we have chosen to cre- " .
ate the hypotheses at any scan in a novel fashion which R-1482
is also intuitively appealing. kather than represent-
Ing the hypothcses in the form of a matrix, this ap-
proach maintains a set of target trees and a list of Figure 3. Transition Diagram for Target 0
global hypotheses. The root of each target cree repre- Dynamics States
sents the birth of the target and the branches repre-
sent the different dynamics that the targtt can assume The transition diagram associated with the measurement
and the various measurements it can be associated with process is shown in Fig. 4. Observe that the probabil-
in subsequent scans. A trace of succepsive branches ity of transitioning to either state is independent of
from a leaf to the ro3t of the tree corresponds to a the prior state. To prevent the existence of targets
potential track of the target. The leaf cf each such that have never been detected, we assume that a target
trace is unique and is referred to as a track node of that is born in the current scan will be detected. An - .-
the target trt.', alternate way of defining this requirement is to define

the number of births paraaeter (in the distribu.ion
Each element of the global hypotheses list con- Pssumed for birtia) conditioned on'the event that it

tains a set of pointers which point to track nodes, will be detected. This also implies that the number
They represent the combination of track nodes postu- of births conditioned on the event that it will not be
lated by the global hypothesis which that element detected is assumed to be zero.
represents. Obviously, the collection of pointers in -. .. .. ..
any one such global hypothesis cannot point to t.o .
track nodes within the same target tree. PD

The creation of the global hypotheses using target -
trees and global hypotheves list, enables the decompo-
sition of the process of associating, targets with mea-
surements into that of associating measurements with PL-
each of the targets and then forming combinations of
the resulting tracks. As such, we refer to this as a _
Track-Oriented approach. The expansion of the individ-
vidual tracks at any scan can, in turn, be done in two
stages. First, the tracks are split for possible dy- 1-P"D
namics and next these tracks are associated with the
measurements. By assuming that the target dynamics
are independent of the measurement characteristics, 1-12-?
the transition diagrams for each of the targets and
the measurements will have the simple form described Figure 4. Transition &Dagram for .
below. Measurement States

The discrete states and the associated transition Now we can depict the construction of the global
diagram for a single maneuvering rarget, is considered hypotheses in any scan. As mentioned, the track nodes
first. The target starts off in an unborn state (B), of all target trees are extended in two steps.
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In step I the track node is split into several Now we form all combinations of track nodes, which
:anchas - to account for each of the several dynamic are descendents of parent track nodes included in the
)dels that the target can assume. This is shown in parent global hypothesis list, with the restriction
Lg. 5. Obviously, a parenc track node that corre- that no two track nodes included in a new global by-
3onds to a dead track is not split; only a continua- pothesis list should have the same parent nooe or use
Lon of the dead status is shown in this case. the same measurement from the current scan. We can

show that fur a parent global hypothesis which postu-
lates the existence of nt tracks, the number of descen-
dent global hypotheses is

min(ntnr) .nt-i( )i (nr + nt 21)

MI DESCENDENTio.. .. ,

TRACK NODES nr! nt!
PARENT WHICH "(nr-i)! i

,TRACK ACCOUNT FOR (nt-i)- nr-..!-i
RODE POSSIBLE (8)

TARGET
M2  DYNAMICS where as defined before

am - number of possible maneuvers

nr - number of returns in current scan .

X Likelihood Computation:

The likelihood of any descendent global hypothesis
Figure 5. Track Splitting to Account for has been shown to be

Different Target Dynamics

In step 2, the extended track nodes (excluding .
:hose which correspond to dead tracks) are associated p~qkjzk] fp(qkjqkl. xk-1) p(.E(k)jqk. zk.1)
uith the measurements received in that scan. New track I-- Ck i I
todes are also generated to account for the possibility
3f a missed detection. Hence, if there are nr returns .- -.
Ln the scan, then each of the track nodes will have p(qk-I.Ek-I)j

(1 + nr) descendents. We have extended the tree ini ,
Fig. 5 to illustrate the effect that step 2 has on the (9)
track splitting process for the case where nr - 2 (Fig. .
6). It is easy to see that for the general case, the where the subscript i denotes the specific hypothesis.
number of track descendents for a maneuvering target Is Since the likelihoods are used as a basis for comparing 7.

tbt various global hypotheses, we can ignore the denom-
inator - it being the same for all. The first term in

[I (1+n%)(1+ntr)] (7) the numerator represents probabilities of transition-
ing from the parent global hypothesis to each of the
descendent global hypotheses. Posterior likelihoods of

r these tracks, after associating them with the different .
S measurements available in the scan, are represented by

r• the second term. Finally, the last term is the likeli-
hood of the parent global hypothesis.

If the likelihood of a false alarm is normalized ..".:".
to unity, the remaining measurement association likeli-
hoods can be scaled accordingly. In such a case, we

12 nend only consider the likelhouds for the track nodes -

shown in Fig. 6 for each of the targets. This makes

PARENT it possible to compute the likelihood of a descendent
TRACK global hypothesis following the same steps used for
NODE p constructing it.

r The state transition diagram for the target dy-M2 2 namics (Fig. 5) defines the transition probabilities
between different target states. The posterior likeli- .
hoods of the measurement associations can be obtained
from a Kalman filter after being premultiplied by the
probability of detection PD. The tracks which are pos-
tulated as being missed are multiplied by (I-PD) only.

X Thus, the likelihoods of each of the descendent track
nodes can be computed. Then, after the proper descen-
dent track nodes have been selected, the likelihood of

the descendent global hypothesis can be computed as a -0

Figure 6. Tracking Splitting to Account for D-'f- product of the likelihood of the parent global hypoth-
ferent Target Dynamics and Different esix and the likelihoods of all the descendent track
Measurement Associations nodes included in it.
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4. Suboptimal Techniques time varying. The latter technique is simpler to im-
plement since there are no thresholds to be designed.

The main purpose for designing suboptimal tech- We have incorporated the &econd option into our
nilues is to reduce the computational burden associated algorithm.
with the optimal algorithm. Within the context of the
optimal algorithm that we have constructed above, the 5. Simulation Results
computational burden can be reduced by either discard-
Ing some of the unlikely global hypotheses or using Due to the large computational requirements of 0
some computationally simpler algorithm for estimating the optimal algorithm, it is not feasible to run any
the continuous-valued states. We will discuss only test scenario f

or more than 2 or 3 scans. Hence, we
the former; several standard suboptimal techniques for have run the algorithm with both screening and pruning
the latter can be found in the literature (e.g., m-B options, discussed in Section 4, in effect. Two test ",--
tracker, constant gain Kalman filter), cases that were simulated are described below.

Techniques available for reducing the number of Test Case I :-. - -.

global hypotheses can be grouped into one of the 0
following We have considered the simple case of a single

target having the trajectory shown (indicated by the
1. Screening continuous line) in Fig. 7. The target starts with a

heading of 30%. At scan 5, it executes a maneuver
2. Pruning (-30' turn) and thereafter maintains a heading of 0%.-

We have generated clutter at every scan represented
3. Merging by O]s). Figure 7 indicates the location of clutter

at each scan.
4. Clustering

15
Both screening athd pruning use the likelihoods to de- a
termine whether hypotheses may be discarded. Merging I ""'
corresponds to the process of combining similar hypoth- a
eses. Grouping hypotheses in order to process them 9independently is referred to as Clustering. Since the 4
optimal algorithm, described in Section 3, constructs •
the global hypotheses in two stages, these hypotheses
reducing techniques can be applied during either the
track expansion process or the global hypotheses build- 3 - .
ing stage.

Screening techniques prevent less likely hypoth-
eses from being formed or discard them after they are -3I ----
partially formed. We have incorporated several such .
options in the optimal algorithm. The first one is
that of creating gates around track nodes and testing
whether a aeasurement falls within this gate prior to a 0

forming a new descendent track node. Since the gate
sizes tend to be large at the time of track initia-
tion, an additional screening option has been provided.
This is to lot initiate maneuvers in target dynamics
until its track is "well established." By well estab- -15 AD
lished tracks we mean tracks for which the velocity un- -15 -9 .3 3 9 15
certainty is below a certain threshold. This screen- -- x (Y)
ing technique will prevent the inclusion of tracks
which postulate maneuvers as a consequence of the large Figure 7. Test Case 1, Rank I Global Hypothesis
gate sizes at the time of track initiation. If a tar-
get were to maneuver at the time of birth, it iill be We have summarized the simulation parameters in
picked up as a new target with little loss in informa- Table I and the tracking algorithm parameters in
tion caused by dropping its previous track. Table 2. The heuristics that have been used to reduce

the computational requirements are given in Table- 3. -

Two other screening options that we have intro- Using the measurement noise specified in Table 1, it
duced are based on the physical limitations of the tar- can be shown that the uncertainty in the velocity es-
get. One takes into account the finite velocities that tiniates will be reduced to less than 10 rn/sec after 5
a target can have; the initial uncertainty of velocity scans. This endures that the heuristic that initiates
states has been choscn to reflect this. The other op- maneuver hypotheses only after tracks are well estab-
tion takes into account the finite accelerations that lished, will postulate maneuvers for the target prior
are feasible for a target; we have restricted thn tar- to the actual maneuver at scan 5.
get from executing several different maneuvers in suc-
cession. In terms of the transition diagram shown in Figure 7 also shows the trajectories postulated
Fig. 3, this restriction implies that once a target by the global hypcthesis with the highest likelihood
enters a maneuver state, it can either ieeain in that (highest rank). It can be seen that it identifies the
state or return to the constant velocity state, correct target trajectory (dotted line through the ta).

However, it postulates the existence of another target
Pruning techniques discard hypotheses after they (dotted line through the Os) that is born, detected,

ar3 formed. It can be affected in two ways: either not detected and dead in successive scans starting with •
deleting hypotheses which have a likelihood below a the fourth scan. This is a consequence of the large 7
certain threshold or by limiting the global hypotheses gates associated with the targets that are just born.
at any stage to a fixed number. The former is diffi- At scan 9 such a track is insignificant and hence can
cult to design since the tnreshold

4 
will, in general, be be ignorad.
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TABLE 1.* SIMULATION PARAMETERS

Scan Time T: 10 sees.

4uuber of Scans: 9

Surveillance Area: -15000 -9 x 4 15000

-15000 4y c 15000

Measurement Noise: ox - 30 m

y- 300.m

Inititi Velocity of Target: (Speed: 300 m/s , 30' he-ding)

Target Velocity after 5th Scan: (Speed: 300 ate , 0* heading)

Clutter: 1 per scan

Uniform between L(xt(k) - 1500) and (xt(k) + 1500)

(yt(k) - 15000) and (yt(k) + 15000)J

TABLE 2. PARAMETERS USED IN TRACKING ALGORITHM

Initial Filter Covariance: Diag [p11 9 P22, P33 1 44

P1-P2 Set based on position measurement uncertainty

p 1/2 1/p 2 200 */sec
33 4,'

I'odel Uncertainty. Diag [q11. q22, q 33 0 q44

q 1 / 2  q 1/2 0
11 22

q 1 /2  q 1/2 5a/@,tC

Measurement Noise Uncertainty

ox - 30.a

-Y 300 a

Dynamic Model of Target

10 1 0 T
I 0 0 as Co OM asnO

0 0sin O' sCosg

Om e{30*, 0', +30*1

Temporal Distribution for Births: Poisson with AB - 1E-5

Temporal Distribution for False Alarms: Paisson with AFA - .5E-10

Probability of Detection: 0.998

Probability of Deatht 2E-4.

.robability of No Maneuver., 0.8

Probability of Maneuver: 0.2/n.u
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TABLE 3. HEURISTICS USED trajectory for the target. Due to the modeling of the
_ _ _ _ _ _ _ _ _ _target dynamics in discrete time, however, some of them

postulate a maneuver initiated at scan 9. Since the
1. Gattng: 10 position of the target will be influenced by a maneuver

only in the next scan, it is only then that the algo-
2. Number of global hypotheses retained at rithm will reject such incorrect hypotheses. As in the

each scan: 10 case of global hypotheses with ranks 1 End 3, we have
observed that some of the remainin3 global hypotheses -

3. Max. number of missed detections permitted postulate incorrect tracks for short periods of time.
for a track: 2 Since they are ephemeral, they do not have any adverse

effect on the correct target trajectory. This feature
4. Maneuver hypotheses initiated only for of the algorithm, wherein most of the hypotheses that

well-established tracks fox which: are retained postulate the correct trajectory with some
minor differences, illustrates one aspect of the ro-

p 1/2 < 15 m/sec bustness of the suboptimal algorithm.
33

p 1/2 < 15 m/sec is

5. After maneuver is initiated, only transi- -. .
tions permitted are either straight line 9
or same maneuver state.

6. A priori information about target position at
birth is ignored, i.e., target position is 3
initialized based on measurement data only.

p 1/2,a x(0) x
11 x 1 I

.3
P21/2 =a x (0).y "

22 y 2. m S

-9a
We have shown in Firs. 8 and 9 the trajectories 2-

postulated by the global hypotheses with ranks 2 and 3.
It can be seeen that the rank 2 global hypothes's is
the correct one - it postulates only the correct tra-
jectory. The rank 3 global hypothesis is almost iden- -IS
tical to the rank I hypothesis. The difference is that -is -9 -3 3 9 1s
the incorrect track is postulated to die at scan 6. . .m-"

__________________Figure 9. Test Case 1, Rank 3 Global Hypothesis

t Test Case 2

In this test scenario, we simulated two crossing
targets along with clutter. The targets cross at the
same point in time. At that time one of the targets

P executes a maneuver too. As In the last scenario,
clutter is generated close to targets. The true target

3 trajectories are indicated by continuous lines and the
clutter is indicated by [is. This is shown in Fig. 10.
The parameters for the simulati.on and the algorithm are
the same as in Test Case I with the following addition.

-3

Target 2 - Initial Position
(-9657, -5264)

aO .a.

Speed .,!d Heading
a (200 mos, -45")

I;; can be observed that the connitions are partic-
ularly severe for the tracking algorithm at the target

,X ,.,A crossing point where target I executes the maneuver.
Figure 10 traces the trajectories posulated by the
global hypothesis with the highest likelihood (rank I).

Figure 8. Test Case 1, Rank 2 Global Hypothesis Despite the exactirg requirements of the scenario, the
algorithm Identifies the correct hypothesis by the qth

On examining the remaining global hypotheses which scan. From these two test cases, we see that the algo-
are retained by the algorithm (which are not shown rithm performs very well in spite of the heuristics
here), we have observed they all postulate the correct that have been introduced.
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is here defines the framework for implementing algorithms
for state estimation in a switching environment.

References

1. Reid, D.B.. "An Algorithm for Tracking Multiple
Targets," IEEE Trais. on Automatic Control, Volume
AC-24, Number 6, December 1979, pp. 843-854.

2. Bar-Shalom, Y., "Tracking Methods in a Multitarget
Environment," IEEE Trans. on Automatic Control,
"Volume AC-23, August 1978, pp. 618-626.

I.3 * 3. Moose, R.L., "An Adaptive State EsLimation Solution
to the Maneuvering Target Problem," IEEE Trants. on
Automatic Control, Volume AC-20, June 1975, pp.

o •--362.

4. Willsky, A.S. and H.L. Jones, "A Generalized Uke-
lihood Ratio Approach to the Detection and Esti-

a mation of Jumps in Unear Systems," IEEE Trans. on
Automatic Control, Volume AC-21, February.1976,

- , ,.. . pp. 108-112.
-15 .9 -3 3 9 is

--() 5. Bar-Shalom, Y. and K. Birmival, "Maneuvering Target
Tracking with Variable State Dimension," ONR Work-

. Figure 10. Test Case 2, Rank I Global Hypothesis shop on Command, Control, and Communication, Silver
Springs, Maryland, June 1978.

6. Summary and Conclnaions
"6. Balakrishnan, A.V., "Development of Minimal-Time

By formulating the problem of multiobject tracking Detection Algorithm," ONR Workshop on Command,
of msreuvering targets within the framework of hybrid Control and Communication, Monterey, California,
state estimation and using a novel data structure to August 1982.

* . represent the discrete-state hypotheses, we have con-
structed t;l' optimal solution. We have provided simu- 7. Kenefic, R.J., 'Optimum Tracking of a Maneuvering
lation results which show the feasibility of construct- Target In Clutter," IEEE Trans. on Automatic
Ing the optimal algorithm. Since the optimalsolution Control, Voluxe AC-26, Number 3, June 1981, pp.
requires exponentially growing storage and computa- T07 M.
tional i'quirements, we have incorporated suitable hy-
potheses deletion t-chniques. Such suboptimal tech- 8. Pattipati, K.R. and M.R. Sandell, Jr., "A Unified
niques drastically .educe the comput&tional require- View of State Estimation in Switching Environ-
ments with little loas in accuracy, *s has been shown ments," 6merican Control Conference, San Francisco
in th,, simulation results. California, pp. 458-465, June 1983.

* The ge,..rality of the approach used to construct 9. keverian, K.M. and N.R. Sandell, Jr., "Multiobject
o- the algorithm makes it possible to incorporate features Tracking b:- Adaptive Hypothesis Testing," Report

other than tracking. For examole, the algorithm can bo LIDS-R-959, MIT, Cambridge, Massachusetts,
extended to classify targets acid identify target iea- December 1979.
surement characteristic.. In fact, the approach used

I

171



GENERALIZED TiACKZR/CUASSIFIER (GTC) - SYSTEM FO
TRACKING AND CLASSIFICATION OF MULTIPLE TARGETS BY MDLTIPLE 53SU4S33

Shozo Mori, Chee-lee Chong Edison Tee
and Richard P. Wishner

. Advanced Information & Decision Systems Dept. of Engr.-Ecou. Sys.
-01 San Antonio Cir., Suite 286 Stanford University
Mountain View, CA. 94C40 Stanford, CL. 94305

V S
lABSTRACT distributions is interchangeable (permutable). In

Tioott:er words, we can treat a random set as a random ele-
< -•This paper describes a system for tracking and ment in a disjoint union of direct-product spaces with

classifying multiple targets using mensurements from different dimensions. As a matter of fact, this was
multiple sensors. This system was implemented based on th.- basic approach taken in [11 and [2). For this rea-

a general layesian theory of multitarget tracking which soi, the basic objects are generally modeled ac d pair
the authors developed earlier. The related implement&- coisisting of the number-of-elements and a vector with
tion issues in Pultitarget tracking are also discussed. the corresponding dimension.

1. INTrODUcTION The main purpose of this paper is to describe a

geaeral multitarget tracking system (called Generalized
In [1) and (21 we provided solutions to several Tracker/Classifier - GTC) which we implemented based

problems which hrd rot b-!n solved in the existing mul- ujon our g.neral theory developed in ill And [2] and to
titarget, multiseasor tr. king literature (surveyed in compare this system with other existing algorithms. In
13]. [41, [5), [61, etc.). The problems wrre: (a) the following three sections, we will briefly overview
"treatment of non-gaussian target/sensor models, (W) our theoretical results. (One should refes to [1) or [21
dependence of detection on target states, (c) determi- for a moreirigorous treatment.) Then we discuss the

* nation of the likelihood of newly detected targets (how implementation ibsues and compare the GTC implements-
"* to initiate tracks), and (d) dependence among ttrgets. tion with other algorithms.

As indicated in [71, [81, etc., Lhe first problem wa*
less difficult than the others which are, however, 2. GENERAL MODEL
obviously important in practice. In the process cf
"solving these problems, we realized that, despite the A tarret is a generic name for any object to be
many algorithms developed in a vast amount of existing tracked and/or classitied, and a sensor is a generic
'literature, there did not exist either a general foun- name for al device which generates an undetermined
dation of the subject or a unified view on it. An number of ýeasurements. In our general model, targets
attempt was made in (91 and ilOl to fit multitarget are modelef as one ertity, i.e., a pair of the two ran-

.- .tracking problems into a subcategory of a special class don elements: a nonnegative random integer N

of dynamical systems. representing a constant but unknownnumber of targets
"in the .whole world," and a continuous-time Msrkov pro-

In (1] ann [2), we presented a view which shrrply cess Xot).I The Markov process 1(t) is on different
"contrasts with this. According to our view, many ele- spaces depending on the number of targets N There-
s"ments involved in the multitarget tracking problems fore, the targets are moieled as an abstracT stochastici jwe in essence random sets as defined in [11], and process (X1(t),N T), called target system sttqt on the
hence the problems are radically different from the countable disjoint union of spaces, which we call LI=

"" conventional tiltering/estimation problems. For example, gL gsystem state space. Each component of the target
Stargets constitute a random set because (in get.eral) system state space corresponds to a given number of

* the number of targets is unknown, and there is no # targets and consists of (is the direct product of) two
p.igri labelling. The returns from sensors are also spaces; the cuin componeat space (to which a common
random sets because of the random number of the returns state to all the targets in a group may be assigned)
and the random ordering. We tentatively call such and the i da A_ component pac_. To account for the

S..features of objects random-set nature. Moreover, as random-sat nature of the targets, the latter space must
will be seen later, many elements (such as tracks and be an N -direct-product of an identical space and the
hypotheses) are well understood when they are connected Markov process X(t) must be interchangeable with

"" to certain random sets. respect to the ordering (labelling) of targets. Any
component of the target system .stge space is in gen-

* The theory on random sets, or stcchastic geometry, eral a hybrid set, i.e., the direct product of a subset
is maitly concerned with those whose realizations are of a Euclidean space (used to represent "continuous"
uncountable set4, e.g., open, closed or convex sets ia infovattion such as position and velocity) and a finite

* Euclidean spaces, and is mathematically very sophisti- set (used to represent "discrete" information such as
cated. Fortunately, in the multitarget trackieg prob- type, maneuvering/operating mode, etc.).
lems we are exclhsively concerned with random sets
whose realizations are finite (or at most countable) One should not confuse the constant (but unknown)

. sets. Therefore we still can apply standard proba- number of targets with that of detected targets, and
bilistic techniques. Fur example, a finite random set should note that the constancy assumption is not res-
of reals can be probabilistically completely described trictive but correctly reflects the reality at least
by specifying the probability on the number N of ele- conceptually. For example, consider targets whose

O ments and the joint probability distributions of ole- states reflect their birth-death processes (as modeled -

ments given N's. However, in order to model the in [81). In reality, the interval between the time
random-set nature, we must require that each of the when the first target is borr. and the time when the

- *Ibis reseatch was supported by the Defense Advanced last target dies is finite. The total number of tar-
"Research Projects Agency, Contract MDA-903-81-C-0333. gets which do exist in subintervals is hence constant
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and finite. In a sense, the co.icept of existence is the total amount of information accumulateo at k.

is indeperdent of the concept of time. In practice, Our problem is to calculate the probability distribu-

however, we ray have some difficulties in reflecting a tion of the target sy ate (x(t),N ) given the

":constant" flow of targets into a surveillance region. cumulative date set Z to k . (t-s3 
in in

In almost all cases, we can resolve this difficulty by terms of (i) P(x(t)INZ ) and (iii P(NTIZ ).
choosing appropriate a Priori initial distributions of Since the origin of each measurement in each data set

target states, is random and there is no t priori labelling, we cannot
directly calculate such conditicnal probability (i)

In general, we assume a multiplicity cf sensors, described above. Therefore we trust "hypothesize" the

each of which generates sets of measurements (returns) origin of each measurement, ealuate each "hypothesis"

at a finite rate. Each sensor output i3 again a pair ano calculate the target syster state conditional dis-

(yl.;) of two random element:., the number N of meas- tribution given each hypothesis, which is in fact a

urements and a vector y of measurements, ann is a ran- common procedure in multitarget tracking. lypotheses
dom element in a'disjoint union of direct-products of as well as tracks are the most frequently used termino-

identical mensurement spaces. Each sensor may how- logies but often ouly vaguely def.;ned. Oux definition

ever have a different measurement space which is in of hypotheses and tracks is closely related to "

general, a hybrid set to account for feature-type Morefield's notion in [12] but diifers from it in that

discrete infermation as well as cont:nuous-value obser- ours are defined exclusively on tLe number-of-

vations. When a sensor s generates an output (yN ) at measurements informa-.ion.

time t, we call (y,N,t,s) a data set and (t,s) a oata
stt index. Let k be a data set index in X and J(k) be the

union of all the sets il,...,NM(k'))X{k') for all k' up

Without loss of generality, we can assume that any to k where N M(k) is the number of measurements in the

sensor generates at most one, output at a time. One of data set indexed by k'. Each elem.'ct (j,t,s) in J W

the key steps in our development is to model a mechan- represents the j-th measurement in the data bet1in-
ism which relates the target system state (state-of- erated by sensor a at tim' t. The random set J' is
world) to the sensor outputs (observables). The first called the cumulative measurement ijde._x !.jjup to k. A
assumption is that the sensor source a and the timing t track at k is a subset of the cumul.-.ive measurement
of its output arc exactly known and are independent of index set up to k and a hypothesis a-- k is a collection
the targets. Therefore, even when uata set indices of nonempty tracks at k. A track is said to be possi-
(ts)'s are random, we can treat them as constant and ble if it contains at most one measurement index in one
known quantities, i.e , all the sensor schedules are data set. A hypothesis is said to be P it it
predetermined. Let . be the set of all the data set contains only possible tracks and no .vo tracks in it
indices (t,s)'s. intersect. Define a random set A(k, by

With the standarl assumptiun of •spkit me.sure- AWk) - {{(A(k.)(i),k')Ik'EK~k),iE1Dk)}Ii~l k)) (I)

ments and no merged measurements for each k - (t,s) in D.D

.X, sensor output (y,NM) is modeled as follows: We where K(k) is the set of data set ind-ces prior to and
assume a random subset I of the target index set including k, ID(k') is the set of det,'ctea targets in -

T.(l,. ,NT) such that T(Ia) D .N (In this paper, #(E) the data set indexed by V', A(k*) is the random assign-
is the number of elements in a seV E.) and a random (k)
one-to-one function A defined on I, taking values in meat in the same data set, And I D is the cumulative

the set J"1 NI. The random-subset I is called set of detected targets up to k, i.e., the union of all
(ne x) the.,N. Ih W)_ e for ks iaule

the (index set o -etected targets and the random the ID(k) for k' in K(k). Due to our no-splitlno-
function A is called assignment function at k. iEID and merge assumption, it is clear that the summation of

j-A(i) meann that the i-th target is detected at k and Prob.I A(k) -X 1i WY over all the pobuible hypotheses
the j-th measurement originates from it. When j in J
is not in the image of A, we call the j-th measuremen X at k must be one. When n ) is a possible

yj r false alarm, hypothesis, in the event 4A(k)- •), there are m tar-
gets which are detected at least once up to k and all

Finally, we assume that every data set is condi- the measurement indices in tsch 1. originate from the
L

tionally independent given the target state. With this i-th detected target.
assumption, we can completely describe the sensor model
by, for each (t,s) in S., specifying ki) the probabil- Since the right-hand side of (1) is a set opera-
ity of the random subset I of IT given NT, (ii) the W %

the number NH of measure- Lion and the random set I D) is not accessible, we mustprobabil2.ty distribution o• h ubrN fmaue

ments (or equivalently the number N of false alarms) "hypothesize" the origin ('u IT) of each element in
and (iii) the probability density function of the meas- A(k), i.e., a one-to-one random function il(k) from
urcment vector given ID' N,I and the random assignment A(k) into I . Therefore, we must calculate M
A. All of the above probabilities, ditributior.s and ke m c u e
densities are, in general, conditioned by the target l(NTI A(k),Zk), (ii) P( Q(k)IN A(k,,Z ) and (iii)
system state. In particular, detection of a target may P(X(t)i f(k),N A(k), 1 (k)). Due to our interchanges-

depend on its state. To reflect the raudoa-set nature, bility condition, however, we can show that the proba-
each of the conditional probabilities, et.., in bility (iif is Lhe same for all the possible realiza-
the above (i) - (iii) must be interchangeable with tion of 11 (k) and that the state distribution (iii) is
respect to the ordering of the targets. invariant under any realization of Q(k). Thus, we

need only calculate (i) and (iii), which can be done
3. GENERAL BAYESI50 FORMULA recursively as shown below: Let k - (t,s) be any data -.

set index in,. , (y,Nmk) the last (current) data set
Let 7 be the set of all the data sets and AC be (Wt)

the lata set index set. Since evfry sensor generates in the cumulaive data set Z-Z and
outputs at a tinite rarte and it scnds at most one data zZ(k).z,,((y,NMK)), where k = (I,) in .X is the
set at a time, S. is at most countable and is one-to-
one to 7.,.. can be enumerated i. accordance with immediate predecessor of k and \ is the set substrac-
time in such a way that .K and 2 are totally ordered Lion oceration. Then, with A- A(k) and
so that the time components are In a natural orde""h
Thus, for each I in K, the cumulative data set Z up
to k is the collection of all the data sets up to k and
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P(AI) (NM- nD(AIk l where •s is an appropriate measure on the measurement
P(AIZ) " value space of sensor a.
PaI T) N- I

With the above additional assumptions, the general
(0 *())! formula (2) in the previous section can be reduced to:T p(TA /yNINTA) "-

l4~-(A) (NT - #(A))M P(NTI AZ)X(y, N M TA P(AIZ) = C IP(WIT) LFA(YIA,k) H L(Y(r,k)ir,k)
(2) TEA(3)where A..

where nD(XIk) is the number of detected targets At k
when hypothesized by k and 1'(y,N MI NTX) is the likel- C - P(Z[) (NM 1) exp(VSk)(1 - L(6!W.k)). (4)
ihood of the current sensor output (y,N 14 ) under assump- "
tion (NT,X). The actual form of X is rather compli- s e in t
cated and is omitted in this paper (Refer to [I] or
[2]). Then, to complete the recursion, t target sys- LFA(YNIA .k) - (NFA) Pk) (yjlk) (5)
tem state distribution conditioned on (Z , A(k), LA MFA NFA(Fk .i

(k) must be calculated as well as the conditional FAjJFA
probability on N_ accoroing to the updating formulae
shown in () and is the false alarm likelihood with N being the number

4. INDEPENDENT, IDENTICALLY DISTRIBUTED CASES of false alarms and JFA being the set of false alarms,
and Y(T,k) is the measurement assigned by (symboli-

Although the general formulation described in the cally Y(T,k)-O if r is not assigned any measurement at -
previous h setion givesnera sound for u ndation d e or h k). Each of the remaining factors L(yll,k) in (3) isprevious section gives us a sound foundation of our generally called the trask-.•-Lmeaaurement likelihogd. ..

theory of multitvrget tracking, its implementation may ge y a lled the ' "-2

pose a serious problem because evaluation of hypotheses They are defined as;

involves all the possible pairs (0 ,NT). However, with
the additional independence assumptions mentioned (i) the likelihood of measaurementy originating
below, we can reduce the general formuls to a form
which is more implementationally feasiblo. We call

models which satisfy these assumptions independent and L(yIT,k) -= ylxkpxlkpdxik (6)
identically distributed (i.i.d.) models. With these Jp ) D,
ass.mptions, applicable models are more limited; for
example, we cannot allow dependence among targets. (ii) the likelihood of a target detected before
However, this class of models is still general enough being undetected:
to include any model in the existing multitcrget
literature. L(Olr,k) - J( - pD(xIk))p(dxI',E,k) (7)

First we assu~e that, given the total number N_ of (iii) the likelihood of ueasurement y
targets, the targets are represented by a system ofo
i.i.d. Markov processes where the target system state originating from a newly detected target;

space consists only of the individual target system L(yt?,k) - &(i)Ip(ylxtk)p(Llk)p(dzI,•k)
space. The L priori distribution of the number N of (-D ' d 8  )
targets is Poisson with mean The event {iID(k)) (iv) the likelihood of an undetected target
in which the i-th target is detected in the data set
indexed by k - (t,s) is target-wise conditionally remaining undetected:
independent and depends only on its own state X.(t). L(ejk) - ( - k)(dxlZk) (9)
Thus, we have i - J PD( '' .

Prob.fieI (k) X(t),N ik) In (4) and (8), t(-E(NTIl,•) - #(X) is the expectednumber of undetected targets up to k. In (6) - (9),

with a given detection probability function pD(.k). p(.IT,Z,k) is the target state distribution at t given
We should note again that pD(.Ik) is a conditional pro- track If and cumulative data set T.
bability so that the probabiliry of the i-th target
being detected is described as :he updating from i(k) to V(k) and from p(.IT,Z,k)

Prob.iiE IDkINpT ) .P(Xit)lkpdXi WIN to p(.ITZ,k) can be done by V(k) - L(Oi0,k)V(r) and

which one should not contuse with d( ) itself. "if Y(1T,k)y+'

The number of false alarms in the data set indexed p(dxj?,Z,k) :I "d'
by any k is independent of the target states and of d'-( - PD(x~k))p(dxJfZ,kj
other data sets, and is determined by a given distribu- D

tion PN1  (.1k) for each k. Given the set ID(k) of otherwise (10)

detecte• targets, the number of false alarms (hence, with normalizing constant d or d'.
the number N (k) of mcasurements) and the assignment
function A(kM , the system of measurements values When we impose the additional assumption that the
Y1(Yj)jj£I, ,N } is target-wise conditionally indepen- distribution (.1k) of the number of false Alarm is
dent and, in particular, the system of false alarm Poisson with mean V A(k) foreach k in .X , we have the
measurements is i.i.d. with a common density pFA(.lk). following simple formula by repeatedly applying the
When j-A(k)(i), the probability density of v. is g,.ven recursive formula (3):
by a usual state-measurement transition Probjbility
densitP tunctin pM(yjtXi,k), i.e., P(A]z) - CI' .(?tZ) (i1)

Prob.(yj. dyIj-A(k)(i),Xi(t)) - p(yjIX.(t),k)us.dy)
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where t(T(Z) is the likelihood of track r, which can be 6. HYPOTHESIS MANAGEMENT TEC'{NIQUES

recursively calculated by Unfortunately there i4 no hypothesis maragewent

if Z 0 theory applicable to general multitarget tracking prob-
I lems. To date however many hypothc:4s management

techniques have been proposed and tested. In this sec-
L(r1Z') g 9Ai[I) L(y1T,k')/FA(y~k') tion we will discuss these techniques and describe

Sif Y(r,k')"yfO vhat techniques we have chosen for the GTC and why. We
I(TI'') L(OIT,k°) otherwise (12) will describe these techniques according to the four

categories of hypothesis management described in the
and previous section-

%A(ylk") - VFA(ylk')pFA(y) (13)
(a) Hypothesis Pruning; The existing pruning tech-

each k', Z'(k) -Z( wt bniques are further catogorized as (al) fixed-threshold
for eand Z-Z i with I' being the runinr. in which insignificant hypotheses are cut and..
immediate predecessor of k. (a2) fixed-breadth orunit!. in which the number

TRACKER/CLASSIFIER (breadth) of hypotheses is limited. In [131 fixed-
5. GENERALIZED Sthreshold pruning (al) was proposed in which any

hypothesis whose probability falls below a predeter-
We have implemented a general algorithm described mined level is pruned. In this method however no

in the previous two sections in the form of a system consideration of the computing resource or of the
caLled Generalized Tracker/Classifier (GTC). GTC is external conditions is made. Typically, the uncer-
intended to be used in performance analysis of multi- tainty of the origin of each measurement is not
target tracking systems by Monte Carlo simulation and resolved in the first few data sets and is generally
to impLement all the problem-independent parts of the resolved as more data sets are accumulatea. In such a
general algorithm. At the current stage, GTC can onlyhandle models for which all the assumptions made in case, we may want to keep more hypotheses at earlier.
Section 4 are satisfied in addition to those made in stages than later stages. On the other hznd, how many

hypotheses can be stored is actually determined by the
Section 3. Equ. (3) was chosen for the GTC's basic available computer resource. From this point of view
equation. The functions in GTC can be divided into fixed-breadth pruning (a2) proposed in [14] makes more
the following three major components: sense. In this method the hypotheses Are ordered by

1. hypothesis generation their probabilities and, for a given fixed breadth N,

2. hypothesis evaluntion, and at most N best hypotheses are k'pt. In an extreme
3. hypothesis eaunation, dimplementation of this technique N is one, i.e., only
3. hypothesis management the best hypothesis is kept. Such a method is called

In hypothesis generation all the tracks and zero-scan algorithm in.[13). Unfortunately this method
measurement s aefrtroseeen cedtion all the tracloses its rationale when we use any form of clusteringmeasurements are first cross-referenced anj all the dsrbdltri hsscin ic oecutr •.

likelihood functions appearing Equation (3) are calcu- described later in this section, since some clusters

Lated. These functions are tabulated into a table may need more breadth than others under certain condi-

called the track-=easurement cross-r._,eren.ce table. tions and there is no intelligent way of allocating the

Then all the old hypotheses and tracks are expanded to resource among clusters.

include the new measurement assignments by a In order to compensate for these shortcomings, we
measurement-oriented tree expansion technique described have introduced a new pruaing technique called
in [14J. In hypothesis evaluation, all the few Ldaptive-threshold/adative- breadth pruning In this

method, all the hypotheses are ordered according to ("
new tracks are assigned with the updated target state their ablitie h ndothe a tive prbingtedistrbutios usig Eqution I0).their probabilities and the cumulative probabilities."-

from the best hypothesis are calculated; when the cumu-
As is well known the number of possible lative probability exceeds a&predetermined threshold,

the remaining low-probability hypotheses are discarded.
hypotheses and that of possible tracks grow very One can view the tixed-threshold pruning as an
rapidly as the data sets are accumulated. In fact we Odaptiewethe fixe d

* fond hatthi grwthis wrsetha exonetia in adaptive-breadth-pru.dtig and vice versa. Thia new pr..n-found that this growth is worse than exponential in Lng method, however, possesses overall adaptivity in

* most cases. Therefore, as in any implementation of any igmtohwvr osse vrl dpiiyi
multi-hypothes. shystoem, weus t have preasonably which the breadth in each cluster is adjusted according
multi-hypothesis system, we must have to the complexity of the measurement data in the clus-
powerful hypothesis management techniques to control ter and the computer resource is adequately allocated
the number of hypotheses and tracks. The hypothesis among clusters.
management techniques incorporated into GTC can be
" categorized as follows: (b) Hypothesis Combining: When the measurement

data are tonfusing, we may have a large number of simi-
(a) hypothesis pruning lar hypotheres with small probabilities. In such a
()ytss oi gcase, unless we combine similar hypotheses, either of
(c) windowing and the pruning methods described above 'ould tail result-
(d) clustering ing in the loss of "important " hypotheses. Since the

Each of tne above categories will :je discubsed la Lhe set of all the possible hypotheses is a partition of a
eachftse above cprobability space with respect to the uncertainty of
next section. the origin of each measurement in the past, to combine

SSince the data used in GTC are structured and the hypotheses is actually to coarsen this partition. If
generally large memory space is required, the choice of the partition becomes too coarse, the performance ofgethell tracker mayor bac gretl regraded. thef. ahic oof
programming language and the dynamical memory alloca- the tracker-may be greatly degraded. Therefor, a com-

mon strategy in hypothesis cumbining is to combine onlyS ion are crucial issues. The first version of GTC was similar" hypotheses. There are two well documented
implemented in SAIL. This version was tested in I hypothesis combining methcda: Wb) tar et-Litate-
several different target/sensor models, from very sim- _oethedi combinin_ d ed in [11tnte-
ple ones to complicated models with state-dependent measurement-index-oriented combining originally pro-

S detýctxon probabilities and target classification. p i [thCuretl, mpemnaton i to tervesinsinC posed in J161. In the first method, two hypothesi s are o
a Currently, implementations in two other versions in C similar and hence to be combined if they have an ident-

•. and LISP are under way. ical number of tracks and each Lrack in a bypothesis
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has a unique similar track in the other hypothesis, decomposition to be valid, any two tracks across two
Two tracks are similar if their state distributions are diiferent clusters should not intersect. If this con-
similar. In 117] a criterion for testing the similar- dition is satisfied, the set of global hypotbeses can
ity of two gaussian distributions was proposed. In be reconstructed by forming all the possible unions of
general cases however the distribution similarity local hypotheses. Thus clustering techniques are in
should be carefully considered based on the particular general methods for maintaining this non-intersection
target/sensor models. When two hypotheses are com- condition. An algorithm for performing such a task was
bined, each pair of siLiilar tracks is combined and the described in [13] and the current GIC adopts this tech-
state distributions are combined with the hypothesis nique.
probabilities as weights.

7. COMPARISON WITH OTHER ALGORITHMS
Measurement-index-oriented combining (b2) is actu-

ally a classic method proposed almost a decade ago. In The most significant difference of our basic for-
this method, for a given M, two tracks with the samt mulation from others is that, for each data set, we do
measurement assignment in the most recent M data sets not assume the probability of detection but rather
are identified. When tracks are identified in this specify a detection function which in actually the con-
way, we may have sets of identical hypotheses which can ditional probability given a target state, i.e.,
be combined naturally. This method is sometimes called state-dependent detection probability. In many cases,
the H-scan or denth-11 alporithm. This scheme may not we cannot correctly model sensors without state-
be adequate when the arrival of data sets is irregular dependent detection probability. For example, a target
or sensor characteristics vary widely from sensor to may be out of a sensor field-cf-viev or hidden other-

sensor. Moreover, when two tracks are combined, there vise in an unobservable region. If we cannot have a
is no adequate weighting. For this reason we have common probability of detection for all the tracks in a
chosen the target-state-oriented combining in which the data set, the most commonly used binomial distribution
determination of two similar tracks and the actual on the number of detected targets (originally used in
track combining are performed by a user-provided exter- "113J and subsequently used in many others such as [6],
nal routine outside the GTC. 110], etc.) is no longer adequate. Instead the Baye-

iain expansion via the random set I of detected tar-
As an extreme example of combining, in the JPDA gets and the random assignment function A at each data

algorithm described in [151 all the hypotheses are com- set k must be employed.
bined at each stage so that only one hypothesis is kept
for the next stle. It is clear, however, that this is In many applications, however, the detection pro-
possible only when we have a priori probability-one oability function is determined only by a sensor
hypothesis with a Priori tracks and there is no newly field-of-view as P.(X) Pmx D(x) * e.g., where
detected target.

(c) Windowing: When a track state distribution has 7rD (x fgy-H;Id
a reasonable variance and measurement errors are not f
exceptionally large with respect to the field-of-view -
of a sensor, one can expect the track-measurement g(.;R) is the zero-mean multi-dimensional gaussian den- 5
likelihood defined by (6) to be very small except for a sity with variance R, 4/ is the field-of-view and y -
limited region. Windowing techniques are generally Hx + noic, is the measurement equation with error vari-
designed to set an appropriate threshold on the likeli- ante R. In such a case, the target-state-measurement
hood function so that its value outside this region is transition probability density becomes
considered zero rather than a very small but still
positive number, thereby eliminating unnecessary
hypothesis expansion. In other words, windowing is p(y x) - g(y - lx; a) I I (x).
screening of data to determine which ones A- should try D
to associate to a given track. For this reason, win-
dowing is often called data validation and, for each
track, the set of measurements in which the likelihood on 4). Therefore, in such special cases, it a track
function is not zero is calls-1 the validation region. has P riori state distribution which is gaussian with . .
When the track state distribu.:ion and the measureme, t mean • and varianceP, the track-measurement likelihood
error are both gaussian, threshold windowing by the defined by (6) becomes p ag(y..H .HPHlTR). Moreover
gaussian likelihood functions corresponds exactly to ihe track-no-measurementDTjelihooa,
classical X

2
- or extended X

2
-test.

One also may view windowing as immediate pruning p(1 - PD(x))g(x - X; P)dx -

in which a branch is cut solely based on one likelihood P-"

function. However, since hypothesis evaltation cannot
be completed until all the hypotheses are expanded and can be approximated by (l-pDmex, if Hx is well i side
their probabilities are obtained by normalization, any Q/ and IPHI.R is not exceptionally large. Exactly
intermediate pruning may degrade the tracking perfor- these two terms appeared in Reid's algorithm in [y3].
mance. Therefore, one should choose adequate windowing

procedure rather by caretully examining the physical The crucial difference of our algorithm in sach
nature y1 the particular target/sensor models used in gaussian cases is the treatment of likelihood L(y 77)
the system. For this reason, GTC relies on a user- where r io formed for the first time. In leid's a lgo-
provided external routine for performing adequate win- rithm, such an L(y,?) is cons.ant and is called
dowing and simply receives the zero likelihood when a target density I'iT For exmlwe eo rve ar-measurement data is not validated.T-Freapwhne gets moving at almost constant velocities in a one-

oimensional space with a relatively high detection pro-
(c) Clustering: Because of our i.i.d. assumptions bability P~,a,, as data sets are accumulated we expect

made in Section 4, when the validation region of each newly detece• targets to appear only on the edges oct
track is not exceptionally large, we can further decom- the field-of-view. Only by calculating this likelihood
pose the basic equation (3) or (11). In such a case, as a function of measurement value, can we adequately
we can group tracks and measurements so that local incorporate such an effect into track initiation. In
hypotheses on such a group, called a cluster may be many applications, the orn-pesaing .f sev-re!t measure-
generated and evaluate, locally. For this ments right after a track io formed for the first time
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is very important since it serves as a multi-scan tar- [51 I.R. Goodman, H.L. Wiener, and W.V. Willman,
get detector. In such cases, an exact calculation of N"aval Ocean Surveillance Correlation Handbook, .
this likelihood may be very important. 1979,," NRL Report 8402, Naval Research Lab., Wash-

ington, D.C., 1980.
As shown in [131, in a typical situation, we must

form many hypotheses in several data sets after a track [6] I.R. Goodman, "A General Model for Contact Corre- .-
is formed for the first time and these hypotheses even- lation Problem,:' NRL Report 8417, Navel Research
tually become a single probability-one hypothesis by Lab., Washington, D.C., 1983.
means of pruning and combining. After a track is "con-
firmed." or ."initiated" in such a way, the GTC algorithm [71 D.B. Reid, .'A Non-Gaussian Filter for Tracking '-
behaves in a way very similar to that of JPDA algorithm Targets Moving over Terrain,," Conf. Record o12_..-
described in [151 if the likelihood of receiving sig- th Asilomar Conf. g• Cirguit Systems and Comput-
nals from newly detected targets is very low in the 2M Nov., 1978.
validation regions of the track. As a matter of fact, '7..
if we set the newly detected target likelihood func- [8] I.R. Goodman, "A General Model for the Multiple
tions to be all zero and start GTC algorithm with a Target Correlation and Trackinh Problem," Proc. 2L
single & vori probability-one hypothesis, we can L-th IEEE Conf. Decision and Control Fort
reduce our algorithm to JPDA with gaussian assumptions Launerdale, FL., Dec. 1979.
and appropriate approximations.

[91 t e r Pattipati, N.e . Sandell, Jr. and L.C. Kramer,
Equ. (11) in Section 5 gives a general formula "A Unified View of Multi-Object Tracking,," r

both for the track-likelihood approach and for the 4thMI!T ONR Workshou 9A Distributed Information
batch-processing approach. An algorithm using the and Decision Systems Motivated bL Comau-
former approach is described in [141 while one using ontr-Communication 1 Prolems. vol.l, pp. 115-
the latter is described in [121, both with gaussian 135, San Diego, Ca., June 1981.
models.

[101 K.R. Pattipati and N.R. Sandell, Jr., "A Unified
8. CONCLUSIONS View of State Estimation in Switching Environ-

ments,"• Mg. go 9!3 Americaon Q oL Conference.
A system for the tracking and ýlassitication of pp. 458 - 460, San Francisco, June, 1983.

multiple tracks by multiple sensors, called GTC, has
been described. This system was built as the first [11] G. Hatheron, Random Sets and Integral Geometry
implementation of the general Bayesian multitarget John Wiley & Sons, Inc., 1975.
tracking formulation which the authors had developed
earlier. By this implementatio , we can reasonably han- [121 C.L. Moretield, "Application of 0-1 Integer Pro-
dIe the problems of state-dependent detection probabil- gramming to Multi-Target Trackiig Problems,," IEEE
ity and target initiation processes. Also, within the Trans. Autmat. Contr., vol. AC-22, no. 3, pp.
i.i.d. assumptions, fairly general target/sensor models 302-312, June 1977.
can be handled. As seen in Section 4, however, non-
linear filtering problem is alwaysia major subproblem [131 D.B. Reid, 'An Algorithm for Tracking Multiple
in any multitarget tracking problem. Beyond Kalman or Targets,' IEEETrans. Automat Contr., vol. AC-
extended Kalman filters or totallyidiscrete estimation 24, No. 6, pp. 843-854, Dec. 1979. -
problems, nonlinear filtering problems are very diffi-
cult to handle. Thus good solutions to such filtering [14] K.M. Keverian and N.R. Sandell, Jr., "Multi-Object
"problems are still essential to a successful implemen- Tracking by Adaptive Hypothesis Testing,." Report
tation when non-gaussian models ar* required, Although LIDS-R-959, MIT, Dec. 1979.
the problem of dependence among targets has been
theoretically solveu, further studies are necessary [151 T. Fortmonn, Y. Bar-Shalom and M. Schefte, ."Joint
before a general algorithm capableiof handling such Probabilistic Data Association for Multiple Tar-
complicated situations can be implemented. gets in Clutter.:' Proc. 121k IEEE Cot. Deis-ion

and Contr . Albuquerque, NM., Dec. 1980.
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A FRAMEWORK FOR EVALUATION OF SURVEILLANCE ALGORITHS

V Mr. Jerold L. Weiss Professor Robert Tenney
ALPHATECH, Inc. Massachusetts Institute of Technology S

111 Middlesex Turnpike
Burlington, Massachusetts 01803

IM I. Introduction attempt to reduce the computational complexity of these
calculations are then considered in a framework which

L -The special structure of surveillance systems has allows them to be compared. The basis for this frame- 0
been recognized and exploited in the development of work is the view that each algorithm is in effect, com-
relevant matheaatical models for some tine,• .,-aee '--puting approximations to the desired statistics.
11i1 24-)- These models provide the necessary rela-
tionships for applying probabilistic techniques to sur-
veillance problems and therefore determine the complex- II. Mathematical Foundations
tty of the resulting solutions. Typically, such solu-
tions are very complex and require unreasonably large A precise description of the dynamic evolution of
amounts of memory. For this reason, varicus algorithms states in a surveillance system is given by the .
have been developed which restrict the amount of comp- following mathematical model,
lexity at the possible expense of system performance.
The purpose of this paper is to formulate a mathemati- Xk+I - F(Yk)xk + wk (1)
cal framework in which analytical comparison of these
algorithms may be performed. Yk " H(yk)Xk + Vk (2)

The special structure of surveillance systems may "-
be seen by examitg two important and related surveil- where at time k, the continuous state of the system is , •
lance problems; target tracking and identification. In xk, the discrete state is yk, the observable quantity -.-.
the most general setting, identification may include is yk, and wk and vk are white noises whose covariance
tasks such as data association, data type identifica- matrices, Qk and Rk, in general may also depend on Yk'*. ."
tion, target type identification and maneuver detec- (i.e., Qk-Q(k,yk), Rk-R(kyk)). Note that the case ,
tion. These tasks are "discrece" types of tasks in where F and H are time varying and a control input is ,. .'..-
that a decision amongst a finite number of hypotheses present in (1) may be easily included and the results
must be made. Tracking problems on the other hand, are that follow will remain unchanged."continuous" in nature since the position/velocity of

each target may take on any of a continum of values. The parameter. Yk, is called the status parameter
The result of these observations leads to the fact that -nd takes on one of a finite number of values in a set
the mathematical models which characterize the unknowns Sk at each time k. We model the hierarchal structure
in a surveillance system contain both discrete and con- mentioned previously by assuming that Yk is a Markoe. **" ..-. "
tinuous states. Note that the measurements which pro- chain with known one step transition probabilities.
vide information for performing tracking and identi- That is,
fication tasks may be discrete or continuous. L

P(Yk - si) = I 
11

j.P(Yk-I - sj) (3) S__
Systems which require such a "hybrid state" form- jiI

ulation are not necessarily unreasonably complex. How-
ever, in addition to this hybrid structure, we must where Sk - l sl,s2,....AL and lij " P(yk-silYk-r sj).
also consider that these problems are dynamic. In par- The problems of identifiation and tracking in surveil-~~o lac ysesrduestof athis anfraceokin in theearl- "'''-•
ticular, the discrete states which characterize uncer- lance systems reduces, in this framework, to the esti-

-. tainty in identification problems, may change with-. mation of Yk and xk based cn a set of observations, ym
time. This behavior reflects, for examole the arbi- = yI 1 i < m . As is the case with all dynamic
trary orderirg of radar data, the scintillation of e•smatiio, problems, we can consider smoothing (k<m), 0
clutter returns, and the execution of maneuvers by the filtering (k-m) and prediction (k>m) problems depending
target. As we will see, the complexity of certain on the goals of the specific surveillance system. In
solutions to surveillance problems is directly related each of these cases, estimates may be computed if cer-
to the dynamic behavior of the discrete states. tain sufficient statistics are known.

In contrast to the resultant complexity associated For example, if estimates of xk are of primary
with dynamic hybrid state space characterizations, many importance, then we desire a characterization of the
problems in surveillance can be simplified by recog- conditional probability density function (pdf), -
nizing and modelling their hierarchical structure, That P(xklYm). Other statistics of importance to identifi-
is, it is frequently advisable to consider a subset of cation and tracking include p(ykjYm) and P(xk,YklYm)
hybrid state problems in which the discrete state, or and p(yklYk). For simplicity, i.. all that follows we
states, evolve independently in time and the continuous will concentrate on characterization of the marginal
states and observations are explicitly dependent on the pdf's for xt and Yk.
dynamic realization of the discrete variables.

The solution to the problem of characterizing the
In the following sections we will review a wi:ily =;rginal pdf's is obtained by a direct application of 0

used mathematical model and the methods by which suf- the partitioning theorem [3].
ficient statistics for estimating the continuous states
(tracking) and for making decisions about the discrete p(xklYk) = • p(rklyk) p(xklyk.rk) 14)

states (identification) are obtained. Algorithms which rk
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where rkj_ yj:lfj;ki This result is very useful for ways [151. In order to ccmpare the effectiveness of
two important reasons. First, the conditional pdf's, each of these techniques we will consider a class of
P(xk[17k.rk) are Gaussian (under the assumption that xo fixed structure algorithms which differ only in the
is Gaussian) and are computable from Kalman filter type of hypothesis reduction techniques that are used.
equations matched to the various status sequences [41. The algorithm is executed as follows:
Secondly, the status sequence probabilitites can also
be computed recursively. In particular, these equa- 1. Compute the desired pdf. [e.g., P(xklyk)J up to
tions separate into predict and update operations and some maximum time, k-N, at which point some form of hy- S
are given by, pothesis reduction technique is necessary to reduce the

computational burden.
Predict: p(rk+llYk) - p(yk~ljky)p(rklyk) (5)

2. Apply a single hypothesis reduction technique and
interpret the remaining hypotheses as an approximate

Update: p(rklyk) - p~n Irkyk-1gp(rkjyk-ij (6) pdf. (e.g., if at time k-N, there are 2 N hypotk~eses
kyk1YK-'j corresponding to each rN sequence when S- 1 0,1 , then

the actual pdf P(xklYk) is a weighted sum of 2N Gaus- 0.
Finally we have, sian densities; Eq. (4). If we prune half of the hy-

potheses and renormalize their posteriur prc abilities,
p(yklyk) - I p(rklyk) (7) then the pdf approximation is a weighted sum of 2N-1

rk- Gaussians).

3. Compute an approximate pdf at time k-N+1 by -.
What the partitioning approach has done is allow applying the recursivL pdf equations to the remaining -

us to characterize the desired pdf.'s by a finite, hypotheses'as if they represented the actual pdf. .
albeit growing, number of parameters. In effect, it
has increased the number of hypotheses which must be 4. Repeat Step 2 and Step 3.
considered at time k from the set of values which Yk
may realize, to the set of values which rk may realize. Figure I shows the optimal algorithm and the class
This growing number of hypotheses with time presents approximate algorithms described above in block diagram
the fundamental limitation to solving surveillance form. The predict and update equations of the Kalman
problems via pdf computation and provides the primary filters associated with the computation of p(xklrk,yk) .
motivation for considering suboptimal (i.e., approxi- and the predict and update equations given by Eqs. (5) . /
mate) algorithms. and (6) are shown explicitly at each time step. The

hypothesis reduction technique is contained in the
The most commonly used algorithms in practical approximation block and is executed at each discrete

surveillance systems can all be viewed as methods of -time k.'
approximating the desired pdf.'s which are optimally
computed from (4) through (7). These approximations As the figure suggests, the optimal estimates (of
involve some form of hypothesis reduction technique in xk or Yk or both) can be obtained only when the actual"-
which the number of status sequences, rk, which must be pdf is available. The class of algorithms described .
considered at each time, is kept under some limit, above is capable of providing suboprimal estimates
Table 2-1 lists the most common types of hypothesis based on approximate pdfs which, apparently become less . "-
reduction techniques and is organized to show that accurate with time. The comparison of various hypothe- ."-
these techniques can be classified as either pruning sea reduction techniques is now accomplished by quanti- "'
algorithms or merging algorithms. fying the accuracy of the pdf approximations which

result from specific techniques and comparing the
I. Pruning Algorithms results.

a. Screening (Gating) The class of probability density functions with
b. Decision Directed (Hypothesis Testing) which we are dealing constitutes an abstract vector
c. Maximum Likelihood space. The predict, update and approximation algo-

rithms can be viewed its operations which map a pdf at
2. Merging Algorithms time k, p(k), into pp(k), Pu(k),Aand p(k) respectively.

The accuracy with whiuh the pdf p(k) approximates p(k)
a. Local Moment Invariance can be measured by considering a vector distance mea-

(I) fixed hypothesis selection sure, D(f(k),p(k)) defined on the vector space of 0
(ii) adaptive hypothesis selection pdf.'s. Many such measures are available and a few are

b. Best Local Gaussian Representation defined below.

The L2 norm has many useful properties and is
Table 2-1. List of Hypothesis Reduction Techniques defined by;

1I1. Comparison of Hypothesis Reduction Techniques L2[p,p1 - $ (p(x)-p(x))2 dx (8) 0

Comparing the various hypothesis techniques it a
particular surveillance system usually involves exten- where X is the state space for the random variable, x.
sive Monte Carlo simulation and can be quite costly. Note that both marginal pdf.'s , P(xktyk) and p(ykIlyk)
In addition, such simulation methods provide little in- as well as the joint pdf P(xk,ykIYk) can be considered
sight Into the importance of various parameters of the in (8) by interpreting the integral in the Stiltjes
algorithms. In this section, a framework and some sam- sense.
ple results are developed which illustrate the advan- S
tage of tosing analytical methods in the comparison and The Bhattacharrya distance is defined as the
evaluation of surveillcnce algorithms, negative log of the B-coefficient, P, which is defined

by,
The hypothesis reduction techniques of Table 2-1

are used in surveillanre alvirithms in a variety of olp~pI - I [p(x)p(x)lh/ 2 
dx (9)
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Figure 1. Visualization of PDF Computations

Another useul measure is the Kolmogorov distanca or Lj The results above suggest that the distance across the
norm which is defined by. approximation segment are the fundamental determinants

of the performance capabilities of a surveillance algo-
rithm which utilizes a specific hypothesis reduction

Kip,pJ = 1 Ip(x)-p(x)I dn (10) technique. In the noxt section, two widely used re-
2 duction techniques are compared analytically and by

simulation.
Ultimately, we would like to oe able to choose one

of these measures and solve for the distance between IV. Comparison of Maximum Likelihood Pruning
O(x) and p(x) at each time k. This distance must, and Local Moment Invariance Merging Algorithms
clearly, be a function of the mathematical model of
Eqs. (1) and (2) and the specific approximation which As we have stressed before, hypothesis reduction
is used. It is assumed that hypothesis reduction tech- techniques can be viewed as pdf approximation methods.
niques which result in better pdf approTimations (smal- As a simple example of this concept, consider a pdf for
ler distance mease'res) should result in better surveil- some random variable, x, say,
lance system performance.

FWx) I pf I W + P 2ý2( W1
As an example of the types of results which are

useful, we now consider the K-distance as a measure of where p1+p2 - 1, fi(x) are normal densities with means
performance and state thAoe theorems relating the mea- mi, and variances vi respectively. Thus, x might
sure K[•(k), p(k)] to K[p(k+1), p(k+l)]. The proofs cf represent an element oi the continuous random vector xk 6 "_
these theorems can be found in reference [6]. (See in (1) and (2), and F(x) may represent an approximation
Figure I for definitions), to the posterior pdf which, in general, is a weighted

sum of many Gaussians. Two approximations to F(x) are
Theorem 1. defined below;

Given K[p(k), p(k)] - 6, then after the prediction op- Fp(x) - f arg max pi (x) (12)

erat'on, i

22 22 2
Fm(x) -Nx [m-PlmI + P202 ; +12 1)+P2(o2+M2)-m I

(13)

Theorem 2. where the notation Nx[m;o 2
] denotes a Gaussian density,

in x, with mean m, and variance o
2
.

Given K[pp(k),pp(k)J ] 6, then after an update
operation, The function FI(x) in (12) is the pdf approxima- .7

tion generated by a'Maximum Likelihood Pruning tule for
K[pu(k),pu(k)I 4 26 hypothesis reduction. That is, if we are considering

two hypotheses, each of which give rise to a Gaussian
Finally, since K is a valid norm (it obeys the triangle density for x and their corresponding posterior proba-
inequality) ve can state our last theorem. bilities pi, then the pruning rule simply drops the

parameters associated with the smallest posterior prob-
Theorem 3. ability.

Let the K-distance across the approximation operation On the other hand, the function Fm(x), is the pdf
at time k be denoted by 

6
k- Then Approximation associated with a certain type of

hypochesis merging algorithm. Again. i1 we view pt as
K[p(k+l),p(k+l)J 4 26k + 6 k+1 a posterior hypothesis probability and fi(x) as an hy-

pothesis conditioned pdf of x, then the merging rule

18J
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COiPAR90O OF ALOITIMU - 2

,,laces the two hypotheses with a single one. The
igle hypothesis conditioned pdf is Gaussian with the 3"

*st two moments being equal to the first two moments
the weighted sum of two Gaussians defined by (11).
!nee the name, local moment invariant merging).

Now, as a result of the reasoning in the last see- S
)n we can compare these two hypothesis reduction PM
:hniques by examining the behavioc of the K-distance
a function of the specific densities involved. Fig. -.

I shows the numerically computed value of K[Fa.F1 and
'm,F] when o2. o2. 1, p1  p = 0.5, i - 0, and mi -.

L~ ~ ~ ~ P 0.5,•" " ' " :

1 22 2

varied. It is quite clear that, for this particular::::::
of pdf.'s, neither pruning nor merging are superior __T

10 20 30 43
:hods In all circumstances. Pruning seems to be a T •".
nerir approximation when mz is large, while merging 3
far superior, in terms of K-distance, when 22 is

all. Thus, in practical surveillance systems, it is Cmo s .ofw, 3
portsnt to consider the difference between the means
pdf.'s corresponding to two hypotheses before decid-
g whether to merge the two hypotheses or prune the

sat likely one.

SI3 b,

M•ERGGI I• Is

.00
J 6 9• ; e

ItI

s to a 0 38 X 10 '
immom"" lof...k

4 6 8 to 12 14 16 is 20 Figure 3. Comparison of Pruning (PRN) and Merging
(MRG) Hypothesis Reduction Techniques With.
-Max Number of Hypothesis of 3N,(N-2 and
N-3)

F(x) - 1/2 [fi(x) + f2 (x)"
fl(x) - Nx(O;)
f2(x) - Nx(m2,1) smeller than that obtained by pruning. Furthermore,

FP(X) - fl(X) or f2(x)W the pruning algorithm only performs about as well as a
F3 () - Nx[m2/2; 1:2'/41 Kalman filter (KF) hased on the constant velocity

2 straight line motion siodel with an artificially in-
creasod design proecas noise covariance. However, when -

Figure 2 N-3, so that 3N-27 hypotheses are retained, then it is
the pruning algorithm whose RiS estimation error is

K - Distance Betwee, Actual and Approx. PDF.s lower following the onset of the maneuver.

Thus, we lave seen analytically by comparing K-
Similar affects are seen in the performance of distances, and experimentally by simulating specific

hese two algorithms in a realistic stonario. Fig. 3 algorithms, that n~ither maxi-um likelihood pruning nor
hove the results of a detailed simulation of the two local moment invariance merging result in superior sur- 0
ypothesis reouction techniques (pruning and merging) veillance algorit s in every instance.
a a maneuvering target detection/estimation problem.
he general algorithma of section III using these ;we
pecific reduction methods was applied to the problem V. Conclusions
f escimating the position of a target whose planar
ynamics could be described by one rf three possible By viewing the hypothesis reduction techniques
inear difference equations. Using noisy measurements which appear in man: surveillance algorithms as pdf
f position, each estimator was simulated over an approximation method we have devloped an analyticalh)

nitial time interval where the target moves in a framework in which tlese algorithms may be compared.
traight line with constant velocity followed at It was concluded tha the quality of any surveillance
Ine k-30, by either a left or a right turn of constant algorithm can be mea ured by the distance between the .. .. "
ngular velocity. The performance of each algorithm is pdf approximations b fore and after the hypothesis re- -
smessed by examining the RMS position estimation error duction technique is implemented. By eximining a aim-
s. time. (More details of the algorithms can be found ple example of two commonly used reduction techniques,
n [61.) we were able to show that neither technique is always

superior and could point to some of the parameters 6
When the actual pdf is computed up to time k-N.2, which might influence a decision about which

ind subsequent approximations keep the number of hypo- technique to employ. In addition, simulation of the
.heser reduced to 3N-9, we see that after the ciset of tun algorithms in a planar maneuvering target tracking
Imaneuver at k-30, the merging technique produces a problem exhibited the same affects that were pointed

osition estimate whose RNS error is significantly -ut by the stap1e analytical results.

•.: ::.:. :.:,.:.'



Besides the results described above, a number of
important issues can be addressed within the framework
that has been described. First, sincc the distance .

meAsures described in Section III are, typically, dif-
ficult to compute, it is advantageous to consider com-
putable bounds on thcse distances. Some work in this
area has been described in [6] and [7] although these 0
bounds can be very loose f6]. Better (tighter) bounds
are necessary if accurate comparisons are to be made
and/or if these bounds are used in adaptive algorithms.
Another issue which requires some attention is the
relationship of distance measures to more relevent fig-
ures of merit like RMS estimation error. Finally,
since we are comparing surveillance algorithms by exam-
Ing their relationship to the optimal algorithm which
would compute the desired pdf's exactly, the issue of

how well this optimal algorithm can perform is of fund-
amental interest. Ultimately, there is always a
fundamental limit on the quality of any surveillance
system. This limit is a function of the parawmeters
which describe the underlying phenomena (e.g., signal
to noise ratios, likelihood of discrete state changes,
conrinuous state observability, etc.).and the perform-
ance of the optimal algorithm is one means of assessing
the important parameters of these systems.
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INCA: AN ENVIRONMENT FOR EXPLORATORY DEVELOPMENT OF TACTICAL DATA FUSION TECHNIQUES
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ABSTRACT able uncertainty in the association of reports to •
specific platforms, resulting in ambiguity in the ocean

The INtelligent Correlation Agent (INCA) project,.- surveillance scene (i.e., the set of platform tracks

"nsotre-ed-4br-DARPA, i! dircrted at the development and with uniquely associated reports). Of course, sensor

lemonstration of advanced technologies for supporting systems are continually supplying new data and this

,ata fusion. A broad spectrum of technologies, includ- must be incorporated into the evolving scenario.
ng Artificial Intelligence, =-ging personal worksta-
.lons, and statistical decision theory, have been The basic approach taken to resolve the ambiguity "

!xamined and used in this project. Central to recent problem is shown in Figure 1. At the top of the tree
k has bee theuLse of symbolic cirt .s, usin is the set of initial data trom which a set of candi-

0 fje't-oriented/messagepassing techniques. The result date scenes are generated. Since there is confuy.ion in

ias been an environment which elevates the level at the data, several scenes may be viable alternatives.

ihich developers and analysts can explore fusion The next partitinn of data (for example, the newest set

;echniques. Powerful graphics interaction has been so of data to arrive) is then used to extend some number

.uccessful that the current INCA system has been used of scenes from the previous cycle. The cbvious combin-

is a prototype workstation for operational data fution atorial explosion must somehow be controlled. -

;ystems. An incremental development methodology, using
:eedback from experienced analysts, is being employed am
n the system development. This paper discusses

;everal of the key aspetts of the INCA system. ,_. "

INTRODUCTION

The INtelligent Correlation Agent (INCA) project,

;ponsorpd by DARPA. is directed et the development andlemonstration of advanced technologies for supporting 0 -. :l
:a',tical data fusion. A broad spectrum of technolo- .m
lies, including Artificial Intelligence, emerging or -- 

.. ....

)ersonal workstations, and statistical decision theory, " - '
iave been examined and used In this project. Central
:o recent work has been the use of symbolic computers, Figure 1. INCA: INtelligent Correlation Agent
ising objectorier.ed/message-passing techniques. The Explosive Growth of Alternative Scenes
"-esult has been an environment which elevates the level
it which developers and analysts can explore fusion An immediate question to address is what type of
nethods. Powerful graphics interaction has been so fusion process is occurring at each node. in general,
;ucr.essful that the current INCA system has been used there are a large number of fusion techniques avail-
is a protctype workstation for operational data fusion able. However, it is often necessary to guide any such
systems. An incremental development methodology, using algorithms to a successful or computationally accept-

feedback from the experienced analysts, is being able solution. At the beginning of the project ttL
?mployed in the system development. This paper dis- knowledge of when to empl.hy, or how to tune, an algo- .. •
:usses several of the key aspects of the INCA system. rithm was not fully understood. Thus, an Initial goal

for ItNCA was the building of a system in which a high

The first section of this paper describes some of degree of user interaction would allow analysts to
the research goals that initially motivated the work. develop "rules" about when and how to apply different
Then a section describing the novel software/hardware correlation methodologies.
ispects of this project is presented. In the third
section, we focus on the current machine functionality In real-world data processing, hueian interaction
in both the algorithmic development and workstation with most processing operations must be limited to
,rototyping. Next, a discussion if how expert assis- produce results in a timely fashion. Hence, the
tance is being integrated into INCA is presented. automation of selection and control of fusion node
Finally, future plans for the project are discussed. processing was needed. In fact, because of the branch-

ing and multiplicity of algorithms to be supported, it
INITIAL MOTIVATION FOR THE INCA WORK was clear that operating the system would require

significant expertise. Thus, a secondary thrust of the
Our project focus is the generation of enhanced project was the incorporation of an "expert system" to

targeting information by integrating data from multiple run or provide assistance to future users.
sources. In particular, we wish to address the problem
of creating ocean surveillance %cenes where the data The project also capitalizing on other artificial
rate per platform is often quite low and t'ý.; content of intelligence techniques to adoress the search problems .- .

the data does not result in unique identification of intrinsic in the tree formulation of multiple scene
the platform. As a consequence, there exists consider- generation.

-" ""• " '1



INCA HARDWARE AND SOFTWARE
0 SPECIA: ARCHITECTURE TO SUPPORT 0 HIQ, FESOLUTTON.

Researchers in data fusion are well aware of the SYMOC PROCESSING MEKRS MAPPED DISPLAY
difficulty inherent in data fusion processing and the a LARGE 64 BYTE
complexity of software development. The use of Fortran ADORESS SPACE I .

code oneriting on large, time-shared computers is the - -
traditional development tool for testing new techniques =Li•
and methodologies. The goals for this project lead us
to consider new approaches to the correlation software " ..OUSE

development. Initial work on INCA was undertaken usi,.ý L- PO"IC STiNG
Interlisp on Dec-10 systems. The power and superior EvIcE

programming environment was recognized immediately as a CURRENT MA•.,INE (SYMBOLICS LM-2) CURRrNI DISPLAY/INTECZFA- '

tool to get leverage over problem complexity. In a CPU PCWER COMPAPABL, TO VAXI,/O "66* x96A ' . EC S' -
addition to the obvious advantages of an interactive 0 1 BYT0 NEPORY (C*Jl AC CIPAHOED) * BACK AND "

language with dynamic storage allocation, our motiva- 0 8A0YT ",
tion for a Lisp-like language was influenc:ed by the * ZETALISP ONLY FY-A3 DISPtAY/I'tEPRFA(r

need to include limited Al aspects in the project. , 1024 X I024 PIXEL.

Additionally, the use of list structures for track and FY-83 MACHINE (SYRIOL'CS 3600) LaOR (F-74 BiTS)

hypothesis representation seemed particularly appeal- DOULED CPU POWER

ing. "4 J PYTF M•R•QRV

* 300 MBYTE DISK

Our initial Interllsp code (1981), which had very , zETALISP. IhTERTISP. FORTRAN

weak correlation algorithm-, .as msed in a real-time .
experiment as an off-line, data quality assurance Figure 2. Advanced Personal Computer Hardware
system.

Figure 3 shows the main window of the INCA system.
The success of the initial cude reinforced our belief Virtually all user interaction is via a mouse and
that Lisp-like languages were especially suitable for mousesensitive icons and menus on the scre!en. The
exploratory refearch. However, the need for very large gridded window at the ieft is for geographic
tight, man-machine coupling was not well supported by displays; it can be divided into as many as four
the available mainframe graphics. At about the time of separate geographic display panes. The rectangular g
the completion of the experiment, a new type of boxed strjcture below the INCA logo is called a
hardware was being broaght to realization. Systems blackboard and is central to the user interface. The
based on ARPA/ONR research in artificial intelligence, blackboard is divided into levels (rcws), each of which
Generically, these machines are referred to as Lisp represents a step in the correlation process. Each f
machines, since they incorporate special hardware to level of the blackboard is divided horizontally into a
support the Lisp language. Figure 2 presents some of set of bins; the logical definition of the bin levels
the key aspects of I.isp machine systems currently is shown in Table 1. Each of the bins in a level
av-ilable. Our initial hardware, A Symbolics LM-2, was contains a definition of how its data were generated
delivered in December of 1991. As significant than the and also contains the result' of executing that defini- -
raw power, address space, and superior man-machine tion. We have intentionally separated logically
interface of these machines, however, is the pcwerful distinct aspects of the processing in order to giv,1 the
data abstraction construts of the language which operator/analyst the maximum visibility into and ... .-
constitute the Flavor system that is provided as an control over the processing. Immediately under the
extension of the Lisp lanquaye. The Flavor system blackooard is a set of menus which present many of the
allows programmers to develrp structures that are top-level functions to the user. These include the ,...-
closely related to the physicil or theoretical objects functions to control the display, to define and execute
that the researcher is trying to model. Thus, objects a bin, and a set of manual track and report editing
such as "reports" or "sensors" are manipulatable commands.
entities in the system. For example, a track "object"
may store its reports as a list of the form: Table 1. Steps in Recursive Sa(ne Generation

REPORT-OBJECT-I REPORT-OBJECT-2 ...
ACTIVITY LEVEL

adding a report to a track is simply accomplished by
the statement SEiECT PARTITION OF NEW DATA R

SErD TRACK ':ADD-REPORT REPORT ). GENERATE FEASIBLE EATENSIONS
TO THE TRACKS IN THE OLD SCENE(S) FT

The Flavor system is a type of object-oriented pro- USING NEW REPORTS
gramnrng approach, distinguished by the use of "message
passing" facilities. Messige passing has the very GENERATL A SET OF ALTERNATE WORLD FS
powerful feature that deamons and triggers can be VIEWS, FIASIBLE SCENES
attached to the abstract data types. For exALple, a
deamon can be added to the :ADD-REPORT message so t0iat SELECT A SET OF THE FEAS!BLE SCENES S
the track state is automatically recalculated. These TO BE EXTENDED ON NEXT ITERATION
capabilities collectively support very flexible implc-
mentation schemes. Fijure 4 shows how the user interacts with 11CA in

order to generate a partition of data on which he
THE CURRENT INCA SYSTEM wishes to do sore processing. The user had moused the

DEFINE AND EXECUTE menu item followed by a selection of
This section will present the tools that are teie first bin at the R level. A pop-up menu is

currently available to the analyst for develooing an presented that allows him to make the equivalent of a
ocean surveillance scene and fov exploring new correla- uata base query. The result of this query is displayed
tion methodologies. This information will be presentri in Figure 4. The user can interrogate the contacts by
by showing several screen images from the INCA s.s*' . additional mouse interactions as shown in Figure 5. "' '
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Li . search, and we apply heuristic search methoos as well.
......a .:. Figure 7 shows two feasible scenes scores that have

'..~.t,. ..-..,-..,been generated with a heuristic alrorithm. The user
would now select one or both of these to propagate with

~ ~ .....q~..:rt~t' the next set of data.

K-* The blac,.board serves as an interface to the INCA j
data base wnere raw roport, intermediate, and final

Sc-,,. -products are stored. He may elect to process a partic-
... .. ~..., ,.~ular set of data in several ways and the bins are used .**

***~ ~It* ~to store these results. There is no intrinsic hardware
OWt VS or software limitation on the number of scenes or *.

- ~ ~ T T 7 Tnumber of intermediate results he can maintain. (The *.

current graphical blackboard is limited to six scenes,
TiE but w~ll be modified to display a structure that better

I ~ ~ -"maps to the tree that the user is building.) In
:L.4; addition to the algorithmic techniques available to the

user, a large number of manual irnd glaph'c tools are
available. Figure 8 shows one of the plottin% options

* I available for examining and creating data partitions
via parametric value selection.

: MOTIVATION AND METHODOLOGY FOR INTELLIGENT ASSISTANCE

- ~ .i--..-.-The current INCA system al lows the user to gener-
* , .~ - ate, tactical pictures using a wide variety of tools and

techniques. We are confident that this allows sophis-
* ticated users to understand better the impact of

.... process improvements and tu determine the best pro-
::.:~ cessing strategy for particular :,ituations. Our 4--

-~- assumption was *hat the analysts would apply very
specific expertise relevant to each of the methods as

* ~ -~,-------- they evaluated process performance and tuned the
_______________algorithms. Since the results of this tuning was to be

made available to users, it was essential to capture
this expertise. Thus, some other form of automated

Figure 6. Mire's for Feasible Track Construction assistance :n operating INCA was necessary. The
conceptual framewvork for merging statistical decision
theor and expert system technology has been explicated

* -E
_____400

aF' E

* - V *
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-1' A.'
W 0 0
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Fiue7. Candidate Feasible Scene Figure 8. Scattergram Facility
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TRACK ASSOCIATION ALGORITHM

A.C. Bamford, ::.M.L. Beals, 0. East

SCICON Ltd.. 49 Berners St., LOND'ON WIP 4AQ, ENGLAND

64 The Track Association algorithms combines a ship's The Alqcrithm
underwater sonar and surface radar pictures in order
to improve the quality of the underwater pictu~re. The algorithmý combines a ship's underwater sonar and

surface radar pictures into a rinigle picture. We
Introduction shall refer to tracks in the comrý)nent pictures as

segments and reserve the term tracks for tracks in the
The deployment of peassive arrays has potentially combined pictur3. A track therefore consists of one
greatly iwproved underwater detection performance, or more segmsents. The objective of the algorithm is
')y making it possibi.! to detect targets at much to place segments from the same target in the same
greater ranges than was previously possible. A track, and segments from different targets in
consequence of this improved capability is that different tracks. The performance of the algorithia
there tend tc be many more targets within the is the degree to which this can be achieved.
Array's detaction range. This in turn complicates
the task of processing observations, in order to Parameterisation of Segments and Tracks
derive an underwater picture consisting of tracks
and their associated characteristics. The problem Segments and tracka are characterised in the algorithm
is made more acute hy the fact that the observations by their estimated solutions ~.-d covariance matrices,
carry limited informatkon, namely bearing and which are parameterised in terms of Reciprocal Polar
freqoency. co-ordinates. These are defined as follows:

The formation of the underwater picture from array =the bearing of chc target
observations consists essentially oft

02 the inverse of the target's range
- assigning observations to tracks, that is

&-ciding which observations come from the same 44- the target's bearing rate
target, and

- the relative range rate of the target
- combining the information contained in the

observat ions in order to form estimates of - the frequency that would be received by a
the tracks' characteristics, stationary observer at the origin in space and

time (for sonar segments only).
The sonar operator can associate observations to form
tracks provided that there has been no break in All these quantities are measured from a stationary
contact. However, he is unable to recognise when origin at or near the receiving sensor at a specific -

two or more tracks, which exicted at differ~it times,' time.
should be associated. TI'is :ould arise, for example,
after a manoeuvre by own ship, ot- as a result of The reasor for using this-parameterisation is that
sonar intermittency. the covariance matrix provides more realistic

cofdneintervals for the estimates of sonar .

The Track Association algorithm aims to enhance a segments, in particular their estimated range.-The-L
ship's underwater picture in the following ways: parameterisation therefore provides a more accurate

esimteofth pnatyincurred (in tefms of good- -

-by recocr~ising that several track segments ness of fit) when segmunts are combined to form a
origintte from the some target, and track. For a guneral discussion on Reciprocal Polar

-by classifying track segments as ships, as a result cordntsee(.
of comparing track segments wittk the surface radanr Generation of Component Pictures
picture. If there are a lot of ships around then
this is potentially a powerful way of improving During the development of the algorithm we have-
the qua.ity of tl'e underwater picture, since th-a generated the component underwater and surf&ce
radar picture contains much more precise infor- pictures in the following way. First a scenario
mation. generator program
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Init-ally, we utilized. one of the expert system
building tools emerging from Al l.boratories to "cap-
ture" the analysts actions. The OPS5 system developcd
at Carnegie-Mellon University, was chosen. We have
been utilizing OS5 in this development activity for
approximately 18 months.

Since many of the features of the INCA system are -
in continuous development, we did not process signifi-
cant amounts of real data dnd the development of a
sophistic~ated rule set was impossible. As a tes;t of
OPS5, .ie addrcs-,ed the simpler problem of creating a
systeo' controller that is capable of running the INCA
system, i.e., ex.!cutinrj d sequ(.nce of actiuns ý.nd
allocating machine resources. Eventually, this process -
wili be expanded to include more complex decision 0
tasks.

Up to this time, we have successfully built and
tested a control system which uses simple resource
allocation procedures (e.g., it always deletes th.
oldest contending entity) and can differentiate simple
situations and ý.elect algorithms for fe3sible track .. .
generation.
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ge'nerates the nrui'.-i and ktnmatics of tarqets The assignment of segnents to tracks is reviewed
periodically. At each review time a number of sets of

determines the pszi-ions of targets at spec-ified segments are selected. Each set forms the basis of a
tirles review, and consists of segments which are assumed to

have come from distinct targets. From our assumptions,
derives raw observations of the targetL consisternt the sonar oz radar segments current at a given time
with the perf~rmanceof ships' passive t,ýnar and satisf, this property. Sets are selected so that they
rada-s. (A sonar ooservation consists of a bearing include all saaments current at the review time, all
and a frequency, while a radar obs-rvation cc *, segments which started after the previous review time
of a bearing and a range). (in order to ensure that they are assigned to tracks

at the earliest opportunity), and Lome (or all)
a siqins the observations to segcments. Obsetv .t' ir, historical segments.
from the same target are assigned to Fa tame
segment provided that they are made ky the same The method 3f reviewing the assignment of the
sensor and there has been no break of contact, segments in a sat to tracks is as follows!

rhe estimated solution and covariance matrix of each a. The characteristics of the reduced tracks, forme.
seosent is then calculated for edch segment using by removing the segments being reviewed from the
Parch filter. This program minimises thýý sum of current tracks, are determined.
squares of residuals between fitted and observed
values. Note that not all sonar bearing observations b. The increase in the objective fun'tion (or cost)
are processed since they cannot be assumed independ- resulting from assigning each segment to each
ent. Instead the first and last bearings plus bearings reduced track is determincd (i.e. the increase in
derived whenever targets change beam are processed, residual sum of squares), as is the cost of not
Note also that sonar segments may have two solutions assi'n in a segment to any exiiting reduced track
resulting from the bearing ambiguity of sonar
observzt ions.

c. Having worked out all the costs, the assignment of
As•s•uptions segments to tracks incurring minimum total cost is

determined. This is done with the restriction that
The initial implementation of the algoritam has made at most one segment can be assignaed to any track
a numTber of assumptions, as follous: (in order to be consistent with our definition of

a set, of segments).
each target travels with constant velocity,
consequently no attempt is made to detect d. Finally the tracks are updated by assigning the
manoeuvres, and segments to tracks in the manner determined in c.

above. Segments which were not assigned to reduced
- each target emits a simple steady sonar frequency tracks form single-segment tracks.

The assumptions were made to simplify the initial After completing the let reviews at eash review time
implementation, and will be relaxed in the next the tracks are examined to see whether any should be
phase of development. It was considered preferable merged. Two tracks are meiged if this results in a
to solve the fundamental problems before being decrease in the objective function, and this happens
concerned with complicating factors. Tbe scenario if the increase in the residual sum of squares caused
generator is consistent with the above asiamptions. by the merge is less than the constant a.

Objertive Function Figure of Merit .

The assignment of segments to tracks is determined Wa have defined a figure of merit (FOM) which takes
by ninimising an objective function. The objective values between -1 and +1, such that +1 is achieved '-
function is defined by when there is perfect association, and that the FOM

decreares as the performance of the algorithm
C = S + ocT deteriorates."- '

wire S is the residual sum of squares between Performance ot Algorithm
fitted and observed values, taken over all tracks,
T is the number of tracks and -c is a corstant. The The algorithm has been tested with several scenarios,
value of oc is chosen to balance two conflicting each generating approximately 50 segments over a 12
factors: the desirability of segments from the same hour period. The FOM for all these scenarios is +1 at
target heirng associated and the undesirability of every review time. It is worth noting that several
associating segments from diferent targets. segments (approximately 10%) consist of a single

sonar observation (bearing and frequency) only.
Assiinment of Segments to Tracks

In order to achieve this performance the method of
It would be too costly, in terms of computing time, computing the cost when assigning a segment to a ""
to detetmine the absolute minimum of the objectiva reduced track, and the method of calculatirg the
fnction at specific times, so an approach which characteristics of a track from its component segments
tries to improve on the existing assignment of have undergon, considerable refinement. An iterative . /
segments to tracks is used. process is not, used which forms a trial solution, and

then rejinearises about this trial solution ir order
to form an improved solutic..l
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Ffthancements

During the next year we plan to relax the assumptions
maide during the initial izplementation, Weanticipate in-cluding the following features:

- Multiple sonar frequ-n cies from a target

- Ta~rget manoeuvres

- Data froms other plattorms.
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FURTHER RESULTS IN MULTIPLATFCRM CORRELATION ANDq J4 GRIDLOCK IN THL NAVAL BA7TLEGROUP

0 N.A. KOVACICH

CCMPTEK. Research, Inc., 100 Corporate Place, Suite B
Vallejo, California 94590

%) j

ABSTRACT. Battlegroup ,~requires that the force tracking picture0 developed by' aggregate force senzors be accurate, nonredundant, and
registered appropriately in each platform's coordinate frame. This
report discusses further results in the develr'ment of systems, de-
noted Force Track Alignment systems, that satisf" ýhese requirements.
The evaluation methodology is dizcussed and performance data is
presentcd that demonstrates the effectiveness-of Pn FTA system that is
composed of a Kalman hias estimation algorithm coupled to a sequen-
tial, track history dependent correlation process. c----

Doccis, on Taking is the process of deciding on a
INTRODUCTION course of action based on the as-

easement.

Multiplatfors correlation and gridlock, denoted in this ExecutLon is the process of carrying out the 0report as Force Track Alignment (FTA), desigrsatea the decision and interacting with the
distributed functional capab~lity of the Naval battlegroup environment.
to align the local tracking picture of each platform with
the cumulative tracking picture ;eveloped by the othe7 plat- Generally,,each PADE control process operates on a charac-forms in the fbrce. Alignment requires accurate, bias free teristic time scale over which the objective is constant andcoordinate conversions between platforms and reliable is coord.sated with other PADE control processes that haveinterplatfor" track pairings in otder to present a one to overlapplig characteristic time scales, objectives, orone representation of the tactical environment to each plat- resource-requirements.
form in the coordinate rame of each platform. When viewed
as psrt of the averall CI system of the ;,batlegroup, FTA is Within this view of Dattlegroup C

3
, FTA is essentially ana surveillance function in support Of battlegroup element of the Perception p-ocess and directly supports theatoperations. In current fleet operations, unfortunately, assessment and coordination activities of the battlegroup.this support is limited jnd sometimes counterproductive due PTA, through the process of intership track correlation,

to the fragility ani unreliability of the gridlock and cor- augmentation of remote data with local data on co~relatedrelation processes. trackr, link reporting respoi.sibility logic, and intership
bias removal striven to maintain a nonredundant force trackThe Waval community has a number of ongoing projects to file that contains the most complete and accurate track dataimprove the FTA proces- in order to improve Sattlearoup generated by force sensors and registered in eacn ships co-coordination and to realize new engagement strategies, par- ordinate frame. Force coordination is supported by FTPtitularly intership fire control. The Gridlock Demonstra- Since each platform perceives the same environment by meanstion System (GUS). developed at Johns Hopkins, Universi- of the single, established force track file.

ty/Applied Physics Laboratory, is currently undergoing
At-Sea testing. The PTA project, to be described in this Improvements In PTA will lead to performance improvements in
report, is under MAVSEA sponsorship and is currently under- a number of PADE control process. To choose one, considergoing Landbased testing. In the near future, the JTIDS com- the timing relationships depicted in Figure I for the PADE7unica-ion link; with its accurst& relative navigation Control process that leads from initial radar detection by a(RELNAV) capability, and MNVSTAR GPSI with its accurate gso- surveillance radar to lock-on by the fire control radar.detic navigation capability, will further contribute to the Suppose, also, that the initial radar detection occurs on
capability of the battlegroup to operate as a unit with sur- the remote platform. (This situation is likely to occur inveillance assets on one platform directly supporting engage- future battlegroup operation in which the remote platform.sent requirements on other platforms. carries the exceedingly accurate AM/SPY-l radar and ownahip

The purpose of this report is to discuss some results ob- carries a typical surveillance radar,)
tained in developing PTA algorithms for deployment ir a _________.___.'__
pre-JTIDS and pre-WAVSTAR GPS environment. The report is in ....tho pats. 1he first part places PTA in the contest of the TIME
Battlegri.ip C system. The second part dotails the evalua-
tion methodology and the performance results obtained indeveloping an PTA yaterm. p LLOCAL TRACK DATA STAB'-

- , ý141REMOTE TIACK DATA STABLE

PTA AS PART OF BATTLEGROUP C3 0
A , THREAT ASSESSMENT STABLE. .

For the purpose of this discussion, Rattlegroup C3  
will be

viewed, in the sense of Morgan 11l, ams a nested, distributed 00DCISION TOESIGNATE STABLEcollection of Perception - Assessment - 'ecasion Taking - D. ...............'-"oo........,-... . ....... .......
Execution (PADE) Control processes, whereina

E...............................................LOCR ON' STABLE
Perception is the process of sensing the envi- I ,

ronment and developing a represen-
tation of the state of the environ- INITIAL FIRE CONTROL FIRE CONTROL
sent, DETECTION LOCK ON LOCK ON

(6000 ALIGNMENT) (POOR ALIGNMENT)
Assessment is the process of relating percep- ( ALGMT A

tions to the objective of the FIGURE 1. Timing Diagram for PADE Control
control process, Process leading from Radar Detection to Fire

Control Radar lock-On.
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In current fleet operat!hna. wherein gridlock and corrala- FORCE TRACK ALIGNMENT
tiofi are not always ralisol.. the rooponne time in the PADE
control loop. from Initial detection to fir* control
lock-on, is alowtd due to delays in the threat assessment Turning to a discussion of I.:A itself. rTA designates the
process and the fire control search sequence. Threat a- interrelated set of algorithmar that automatically and con-
easement is slowed in areas of overlapping surveillance coy- tinuodely align the local track pic~ure and the force track
etrage since operators are not confident of correlation deci- picture. As such, PTA correlates local and remote tracks
sions. iUe the two radially inbound tracks truely represent received from all platforms on the data link, and estimates
two vehicles or only One vehicle doubly represented 01 actu- and collects biases between each platform and the Gridlock
ally three vehicles because of a misscortelation decision? Reference Unit (05)1) which estabIlahes the standard coordi-
Once* enough corroborating evidence to obtained (e.g.. over natt system for the Interchange of track data. The flow of
voice link. IW. visual contact, etc..) to indicate that the data in an PTA system is shown in Figure 2 'and discusl.-d
remote track is a definite threat (i.e. the threat asses,. mori fu!ly an Novacich 12.1.
ment Is declared stable, as shown in the figure), then a ce-
sponse is conside-ed. A typical response is to lock-on to Some underlying assumption mad* in the design of PTA iCor de-
the threat with the fire control radar as a ,relud* to actu- ployment in the 1904-1990 time frame are that each platform,
ally launching a missile. Unfortunately, because, Wnorship maintain a single set of bias estimates with the GRU vice
bias rpmoval has historically been so poor, tactics have bias -?stimates with all platforms. and that PTA employ a
evolved that requir2 the fire control search sequence be in- single correlation algorithm to satisfy the dual require-
itiated only on local t~ack data. In many cases, the -.arch sents of generating mutual tracks with the 00)1 for gridlock
time io impractically high, thereby tying up a valuable purposes and generating ritual tracks with remoteit from all

reorewhen the search sequence is initiated on remote platforms in order to maintain an accurate. nonredundant
data tharct .uffers from large gridlock and misalignment force track 'file. The technological environment is
errors. Therefore, the fire, control search sequence Is pre-JTIDS and KAVSTAR CPS and consists of current fleet
delayed until local track data becomes available. Once a radars and navigation systems and the current .1nta link
local track Is established and determined to be the same as (Link-Il).
the remote track, then the *-.arch sequenco proceeds and ul-
timately. in most Instances,, leads to a stable lock-on.

As the accuracy and reliability of the alignment procesImprove, a numbee of delays in this PAD9 control process ca

be reovedeEVALUATION METHODOLOGY
the time required for threta% assessment can be re-
duced since the correlation decisions are more re-
liable leading to accurate threat. assessments The objective of the project is to find a oft of algorithms
without as much coaroborating evidence; and algorithm thresholds su'ch that PTA system performance is

maimized. The objective is a formidable one given the va-0 therefore, the decision to lock-on can be made reaty of algorithm possibilities, the complex feedback in-
sooner. and teractions in PTA, and the large number of system thresh-

the fire c~ntrol search algorithm need not wait olsI a .,.-
for local track data since the intership biases To manage this problem, seven candidate PTA systems were
are removed Ly the alignment process. designed which reflected various choices from a spectrum of

possibilities (e.g. * single pass vice multipass correlaftion
Effectively, when the alignment process is accurate and re- constant goin vice Kalman bias estimation, uncoupled vice
liable ec pltform 'can respond atot:he ntacticll coupled systems, and PTA systems with and without oper. loop
evraetaifech remote trac k is asC acrten re1i- initialization algorithms). A Monte Carlo simulation pro-

able as a 1mca trark. W04e- tbh capability is established qrwc. was written in order to stress the various IFTA syrtems,
In the battlegroup, new engagement tactics (i.e., Decision to examine performance levels, and to optimize system
Taking and Execution processes) become possible. thresholds. The approach to optimizing the system thresh-
particularly the capability to launch a missile on purel-- Olds was to find the set of thresholds In which 'the PTA3
remote track data (*Launch on Remote' capability). These system exhibited acceptable correlation and bias estimeation
engagement tactics, generally denoted am intership fire performance Over the largest range of track densities in the
control, will be particularly effective with the introduc- presence of severe irtership biases (10 nei gridlock ercror,
tion of the AN/SnY-I radar which Is capable of highly 4 deg azimuth bias, and 15 to 50 Knots of interahip drift).
accurate tracking. PTA will be a critical featocre in Standards for acceptable PTA performance were defined and ..
reaolining the full potential of this and other systems in specified in terms of allowed levels of dual designation

DatlegoupC
3
.(less than 5%), gridlock accuracy (less than .75 nmi):. min-
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xastion time (less then S minu~es). and stability across
gatten updates learn than St incorrect docorr*letions).
outcort Of this pbase of the evaluation program to naxt-
* ech PTA syattm is presented In Figure 3. Tecr n .
r atr load requirement# of each system are plotted
lisot the maximum track d.nsity for which the PTA system Ira (dr)
sfied the acceptable perfo'rmance atandards. Each rTA ISCAN
e*m and all performance datp are detailed in 141. AVERAGED -.0-

DISTANICE
BETWEEN 1.0

4.0 MUTUAL

3.0

4rAD 191.1 0 20 40 so
STATE to '.0S 49 SCAN NUMBER
LOAD 59.

(% CM TIME)223 04 23?08FIGURE 5. Alignment Performance of Loosely0
1. Coupled rASystem that employs Multi-Pass

0. C lorrltion and Kalman Dias Eatimation (rTA

4.0

3.0 1. detail In Miller 131. Figures 4 and 5 present the pertor-

TRANSIENT m ance of the beet performiing rTA syatem (PTA6l9l.2) and the
poorest ?ortorming system (rTAC), respectively. The figures

LOAD 2.0 6191-2 4099 plot the scan averaged intertrack separation versus scan
C% PU TIME) 223 1period. Note the comparative stability of PTA419I.2. The

I24 0.3 0 r.AO muffered because of misscorrolationo that drew off the
3.0 h ias estimates leading to further misacorrelations and bias

troa noe misscorrelationa and inability to later
2048 decorrelate -he incorrect decorrelations were due mainly to

I0K the lack of internal coupling botween the correlation and .

9K bias estimation process.
Ws3.

"PA CORE SK As a result of the simulatiun testing and system performance
REQUIREMENTS 7K 9 using the live radar tape.,.~l12 was recommended for
(INSTRUCTIONS 8K1919

2 , 4 09S implementation. The next section provides a description of
PLUS COMMON 6Khssyts

DATA) SK 0ti ytm

4K3K 2243 2048.
2K 406S TE
1K 0.. 0[ DESCRIPTION OF RECOMMENDED PTA

340 70 21 .V .A
The algorithm features of the terommended PTA system will be-
discusd in terms of Initialixation, Correlation. Dias to-0

?13PE .P Maximum Track Density for !which tisatin nd Interna Couplit.g.
the rTA Syatel demonstratld acceptable per-
formance (X 10-~ tracks/NMI' I nitialization

The open loop Initialixation algorithm employs a two-track
pattern matching algorithm that is used to provide an An!-

It next stage in the evaluation program Vs3 (to exercise tial tatimat-t of the intorship biases and used In correcting
..h PTA syettem with live radar data. A radar data tape was bias *8tLNateC when the closed loop portion of 1TA degrades
owided by Applied Physics Lab/Johns Hopkins University and through destructive feedback of oisacorrelationS to the bias
ntained time synchronous, smooth track data from two filter. The algorithm searches for local-local track pairs
/S55-39 radars, one at APL/JHU and the other at the Naval whose spatial separation equals, within track noise, theAs
search Lab 34 miles away. The data tape isý described in sepaeration between remote-remote track pairs. (Intertrack

spatial separation between local tracks and between the cor-
responding remote tracks is translation and rotation
Invariant so Is a valuable indicator that two local-remote
track pairs are corrolatible.) Additional correlation
checks are made on the two locsl-remot* pairs (e.g. Identi-

6.0 tication, height and velocity teots) before finalizing the
correlation. The set of correlations determined In thisI ______ manner generate the initial set of innovations for the bias
filter or the needed correction for the degraded bias fil-

iSTANCE ------- 4-

E"tWEN 3.0 . 4L2
1UTUAL R2
RACKS) n L O

2.0 r

1.0 -4 . .- Ll

C 20 40 R3
SCAN NUMBER

FIGURE 11. Two-Track Pattern matching.
FIGURE 4. Alignment Performance for Uncoupl- (Ll,trl) and (L2,R2) are correlated od~ly if DL
ed PTA System that employs Single Pass Corre*- adDR agree within Track **Ase. ..

lation and Constant Gain bias Estimation (PTA
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Correlation The advantage of thim definition of the innovation sequence
for the azimuth ftlter Is that it Is translation invariant,

The cor~eletion algorithm carries out a seluential. two way thereby eliminating any coupling o* the tcansleticrn. filter
(local-to-remote and remote-to-local) correlation process to the azimuth filter. Errorm c: Laansionts in the transla-
an.j makes correlation decisions on local-to-many remote tion filter have no @(ffct on the azimuth bias estimate. On
ambiguities, remote-to-many local ambiguities, and meny the ot~.er hand, the translation filter Is coupled to the ax-
local-lo-sbany remote cabiguities. (Currently, the algorithm imuth filter through the measurement covariance matrix,
makes correlation decisions on 2x2 matrix ambiguities only. thereby treating the azimuth filter as a noiese proc*-s.
Wait decisions are declared on higher o~dor matrix
ambiguities.) The corrolation factor used to weight Coupling
potential pairings and used in decorrelation processing for
established pairings (outisla) incorporates track positional The bias filter and correlation process are coupled In two
histories and appears in Kovacich 15). The correlation ways. First, the correlation proceis uses the bias filter
factor is recursively cilculated and follows directly from covarian:. matrices to size correlation gates and to update
saye* rule: the correlation probahtlities. Second, the bias filter is

coupled to zh* correlation process In that only rutuals
whose correlamtion probability exceed a certain threshold are
used In determining the innovitions. This coupling aspect
has Proven to be very effective in generatinq a stable force

CCjti) A PICOsm,'E-Lti),;(ti)3 track picture.

SUMM4ARY

WHERE I
This report discussed further results obtained In the design
andt :valuati~n of IPTA mysters. The relationship of FTA to

P(D L~ti),Dt~i"ORADL(ti-I. R ,ti..l) attlgroup C' and the evaluation mothodology were discussed
L ILt)D~i/OCR.tt1.Rt;) anJ features of the recommended PTA system were presented.

(tj)DX~j)/0 CRR.V`(tI) tjl~j The recommended system is currently undergoing Land-based
testing in an operational Naval Command and Control program.

. (R~EXI-D2 (2a)))At-Sea testing is to follow.

0 - 9PARATION BETWEEN DL(ti),DR(ti)

e- SUN O? LOCAL AND RENIOf TRACK VARIANCES

I SCALING CONSTANT REFERENCES

DL(ti),DR(ti) LOWCAL, REMOTE POSITION VECTOI'.S (1) Morgan, P.D. A Total System Approach to Commtand Systeg
(SMOOTHED) AT TIME ti Design. Proceedings of the Sth MIT/ONE Workshop in C

Systems. LIDS-R-1267. December 1982.

CO(O) * .5 123 Kovacich, M.A. A summsary of Results in Multiplatforn

Correlation and Gridlock. Proceedings of the Sth
MIT/ONR Worksnop on CJ Systems. LIDS-R-1267. December
19$2.

(31 Miller, J.T. GriJlock Data Analysis - Initial LAP
Data. P22-0-478 ArL/jNu. 22 June 1960.

Bisa Estimation 141 Force Track Alignment System Selectionl Report. COMPTEK

The bias filter consists of two jains-limite. d Kalman fil- Reeearch, Inc. Report No. 10811-2600-1. 1 June 19S3.

tersi 11 the translation filter which estimates tase lati- (51 Kovacich, N.A. An Aposterior Approach to the
tude, longitude, latitude velocity, and longitude velocity Multisensor Corr--lation of Dissimilar Sensors. Pro-
biases and 2) the azimuth filter Which estimates the ceedings of the 4th MYT/ONE HorkshoIt on Comr..rnt and
intership azimuth bias. Both filters perform maneuver do- Control. LIDS-R-1159, Volume I. October 1981.
tection with gains reset in order to adopt to sudden shifts
In intership biases.

The Innovation sequence for tho translation filter Is the
average lat/long separation vector between the local/remote
tracks making up the mutuals held with the GRU. The innova-
tion sequence for the azimuth filter is the average anqular
separation between line segments connecting local tracks and
line segments connecting remote tracks. See Fig-ire 7.

MUTUAL Z
FIRST R

AZIMUTH RESIDUAL

FIGURE 7. Definition of Innovation for Azi- --

muth Filter.
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INTERSHIP SENSOR ALIGNMENT USING URF
|TACTICAL DATA LINK RELATIVE NAVIGATION

R. H. Overton -.

Applied Technology Division
COMPTEK Research, Inc.

""*,j 596 Lynnhaven Parkway
Virginia B.ach, Virgiria 23452

Abstract A UHF link Rel Nav process employs two sets ot
data. The primaary data are the outputs of on-board

rat tacticna force data links can 'provide accu- stvigetmon sensors such as inertial or h Tehdnglspeed

delays, transformed into corrections to dead-re'koned second set of data are "pseudorauges," the propagation
relative position estimates by a decentralized delays for ?recise Participant Location Information
extended kalnan filter. The accurdcy of this relative (PPLI) messages, as measired by the recipients. These
navigation can be exploited to achieve intership sen- data, which include clock biases, ir', used to maintain , ,
sor aligment among the participating units. In cer- a model of errors in the primary data. These errors
tamn common geometric situations, a simple range-only are calculated in JT).DS by an 18-state Kilman filter
triangulation can be used. The results obtained by maintained by each participant. Siice each PPLI
this method have accuracy comparable to more sophisti- scurce reports his own position and time variances,
cated filtering techniques, at a considerable reduc- these filters can be adaptive, and feedback is reduced
tion in ccmputational time. by a convention that prohibits the use of PPLI mes-

sages with reported varia•ces gre.,rer than the recipi-
Introduction ent's variances. To allow for both absolute and rela- S

tive navigation to be passed on the link, an arbi-
it primary requirement for effcctive battle force trarily designated Relative (U, V) Grid is maintained

coordination is the establishment of a united picture by the partiLipants. The geodetic positioning and
of the locations and actions of all militarily signif- orientation of this grid is updated by all units when-
icant oojects (tracks) in the tactical en',ironment. ever any participant obtains a geodetic fix of his own
In modetn battle groups, with numerous units reporting position. The increased accuracy of his geodetic
surveillance information derived from diverse sensors, position report, as indicated in his PPLI messages,
this requirement is frequently not met. Principal allows other participants to improve their estimates .
impediments to establishing a coordinated track pic- of their own geodetic position, either by direct prop-
ture are the inability of reporting units to locate agation time-delay measurement or by relating the new
them.elves precisely in a consensual local navigation geodetic information to the known position of the PPLI
griJ (gridlock); low data rates and unreliability of source relative to the recipient. This latter method
the communications links; misalignaent among sensors allows the use of relayed (not line-of-sight) PPLI
on different platforms; and the inherent innaccuracies messages fer improving absolute position estimates.
of the sensors themselves, including operator r-d Clock synchronization is enhanced by Round-Trip Timing
tracker errors. (RTT) message exchanges (bee Figures I and 2).

The use of frequency-agile. hich data-rate UHF
links, sa h as JTIDS. affords an opp)rtunity to reduce
the effects of poor gridlock and of slow, unreliable
communications. Furthermore, the techniques involved
are independent of the sensor errors experienced by V(North)
participants. As a result, mathematical techniques
can be used to correct for sensor misalignments, •
reducing sensor biases to the point of insignifican'ýe U1
when compared to the random errors inherent in 'he
sensors themselves.

The t~rst section below outlines the method by
which the Gridlock Problem is solved by UHF Relative
Nav'lation. The second section proposes a highly
accurate technique for correcting sensor misalignments
among platforms. The third section contains an U2 5"
analysis of the remaining error in sensor alignment, UO
due to all factors involved, including remaining
grid lock errors and sensor system inaccuracy. U (East) '..

Relative Navigation

The tactical force data links using UHF signals
can measure signal propagation delays for calculating iu'-e g
ranges accurately enough to maintain goad relative Figure 1. PPLI Messages
navigation (Rel Pav). An example of such a system is
the Joint Tactical Information Distribution System .
(JTIDS).
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U1 If U0 does not hold anoth.er participant on the
sei sor to be aligned, U0 can resort to a second -sethod

/e of estimatiag sensor bias, utilizing a mutual track
held by U0 -.nd another link participant UI, asS~~fol1lowes:

Let T be the object heing tracked by both UC and 0
Ul, and reported by U1 over the link. Let R0 , RI
be the distances from U0 to T and from U1 to T,
respectively. Let D be the distance between U0

S and U1 (see Figure 4).

Construct a rectilinear x', y' grid at U0 with
positive x'-axis through U1 . Then the position

t1 -t2 of T is calculated as:

2 clockbis x' -(R2_R 2. 2) 2D (2a)

y' R" + )2 (2b) .. :...

Figure 2. Round-Trip Timing The choice of sign for y' is determined by the
sign of C, the angle formed by the positive
x'axis aerd the ray from U0 to T.

A critical factor in UW' link Rel Nav is the
exclusion of data frum sensors such as radar. This %
exclusion allows the separate computation of sensor
bias by each tactical force unit, referenced to the REMOTE TRACK
common Rel Nav grid. The high levels of accuracy in
Rel Nav, combined with elimination of large sensor
.azimuth biases, allow for much improved correlation/ 0
decorrelation criteria and a unified force track
picture. Because of the independence of different
units' calculations, no additional message traffic is
required on the link. A

r.tersOi Senjor Alignment

A method for determining sensor azimuth bias is L
as follows: If U0 holds another link parcicipant, U1 , /TRACK x

on the sensor to be aligned, then the one-pass
residual bias estimate using U1 is simply

ae - tan"1 ((xo-1i - xlyo)i(yjy 0 + xlx0 )) (1) REL NAV POSITION

(PPLI) " "
where (xo, yO) is the position of U1 acrotding to U0 RESIDUAL BIAS S
sensors, and (xl, yl) is the position of U1 according U0
to his own report, expresseJ in an East-North (or U-V)
aligned coordinate frame centered at U0 (see Figure 3).

Figure 4. Utilizing Mutual Track

S~Ut
Error AnalysisREL NAV POSITION

(PPLI) First, consider the general error model for any
one-pass azimsth bias estimate. The error co is, in .. -
general, a function of five random variables:

4 SENSOR RETURN X0 - noise in measuring U0 azimuth (radians)

X- noise in relative position estimates
by U0, U, (feet)

X2 - noise And bias in UI azimuth (radians)
RESIDUAL BIAS X3 - noise and ias in U0 range (feet)

u0 X4 - noise And bias in U1 range (feet).

These five random variables are assumsed to be
independent. X0 an~d XI have mean 0.

Figure 3. Usi.ag Rel Nay Position of For each residual bias estimate using equation
Participating Unit (1). eq can be approximated linearly by

*e X0 + X, / D (3)
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If equations (2a and 2b) are employed, let T be
tne angle between bearings to T from U0 and UI. Then

Ce0 a X+ /DeX 3 cot R0o

X4 cscY I Ro + S(X 0 ) (4)

where S(X 0 ) is the error in choice of sign for y'.

from equations (3) and (4), it follows that if
equations (1) or (2i. and 2b) re used tu calculate
residual bias, then:

1. ic is independent of X2 ;

2. If equation (1).is used, the estimate is the
optional measurement, since any measureneut
includes errors X0 and Xj/D;

3. The coefficients for X3 and X4 are bounded by
I/R0 Sin V.

For many sensors (e.g., radars), range errors
are small compared to the ranges at which
they operate. In these cases, this bound
implies that, with suitable geometry con-
straints, the X3 and X4 terms of (4) are no

// - greater than X0 and frequently are much less.

4. The error S(X0), resulting from the choice of
the incorrect sign in Equation 2b, can be
handled by observing that S(XO) w 0 or S(Xn)

"" - 2
y'/R0, depending on the choice of sig"

for y'. Therefore, io- any fixed value
yo Y 0, one can reqcire that lyl > Y0 i"
"Equation 2b; otherwise, the track T will 1,e ,7%
discarded from further processing. If S(X0)

0, then I S(Xo) > 2 y'u RA > 2Y /Ro"
3 therefore, U• one rejects any residual bias

estimate, A9. greater than, say, yO/Ro, then
for any accepted 6, the probability of S(XO)

, 0 is less than the probability that the
"total sensor asimuth error (X ;. bias)
exceeds yo/Ro. Thur, the proba',ility of S(X)

" # 0 can be made arbitrarily small by choosing
yo to be sufficiently large; the choice
depends upon the distribution of the total A.:
errors experienced by s_.-sors of the typ0
being aligned.

The proposed bias estimates are thus expected to
give errors on the order of X0 + Xj/D under minimal

geometric constraints. If the variance of this
expression is given by o2, then the least-squares

*" approximation using n observations will have an error
Svariance of approximately 2 /n. When implemented in

varied simulated environment3, the methods described
above exhibit errors within these expected values,
with considerably lower processing then required by a
"lesst-squar:s filter which models the (x, y) position

Of U0 . U1, and T fnr each track.

S a,.
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0THE USE OF RECIPROCAL POLAR CO-ORDINATES IN PASSIVE TRACXING

A.C Bamford, F.M.L. Beale, J. Lee, S. Patel

01' SCICON Ltd, 49 Bernerj St., LONDON WIP 4AQ, ENGLA1~n

The use of Reciprocal Polar co-ordinates to para- An aepr priate transformation for the Bearings Only
Smeterise tracks is disLussed. Their use mikes the problem is suggested by considering the standard

problem of determining the cheracteristics of tracks 1936 Formula for estimating a target's range. If the
from bearings only data much less non-linear than observed bearing rate is B, when own ship moves with
thi use of the more conventional Cartesian a velocity Ul across the bearing and is B1 when own
co-crdinates. ( ship moves with a velocity U. across the bearing,

-o-......... then if the target is at range R and moves with a
Introduction velocity component V at right angles to the bearing,

we have
The task of tracking a moving target from sensor
data can be formulated by as!uminC that the target B1 = v-u. and B1 - V-U"
moves with constaot velocity. Once this basic R R
problem has been solved, we may extend it by assum-
in-! that the target manoeuvres from time to time, or, in other words
thit is to say it changes its speed or course. For
t.2 basic problem it is natural to represent the .1 = B0-B and V U•Bi - UIB
pcsition of the target in terms cf parameters R UA-U Us - U1
l,. 1, r5 and 'f such that the Cartesian co-
ordinates of the target at time t are: This means that the reciprocal of the range and the

bearing rate from a stationary point near own ship
(X, + I 3 (t - to), Ye + 52 + 5 (t - to)) are linear functions of the data B! and H:.

where (Xc, Ya) denote some convenient origin, and t, Proposed Parameterisation
is some convenient time. We can then compute fitted -
values for the observations of bearing, range or The above analysis suggests that the parameters
rate of change of range, and hence find parameter 93, and 94 should be replaced by parameters
values to minimise some weiqhted - m of the squares oi, 02 0 and 9% representing the bearing and the
of the di-zcpancies between the measureo and fitted reciprocal of the range of the target ýL L--- to
observat ions. tron a point att n_ r own ship's position at this

time, tbh heaa1nm rate, and w,'.e parametcr relat•-d
However, if most of the data consist of tearings ,-;--2, •anoe rate. Our tirst thought was that 14.
from a single slowly moving platform, then the shoulJ be- -h1 Late of ,feu 0, the rcipxocal of
model is highly non-linear in the sense that, over the range. But further work, described lat-r,.
the whole range of plausible tar-et tracks, the suggests that tshould be relative range rate, that
fitted bearings are highly non-linear functions of is the velocity of the target along the bearing line
the parameters. This nonlinearity can largely be divided by the range. It is natural to call these

-removed by using a dirferent paramoterisation. We Reciprocal Polar-co-ordinates. To use them we need
shall refer to the parameterisation we chos,' to formulae for the 1 as functiokas of the i and for
reduce the nonlinearity, as Reciprocal Polar co- elements of the Jacobian matrix (21/%6 ). Given
ordi ne=, formulae for linear approximations to the fitted

values of any observation in terms of the jr, we
In the course of this paper, we outline our reason- can then derive corresponding linear approximations
for choosing this parameterisation in the first in terms of the
place, and then proceed to desc'ibe the work we . '

carried out to confirm our ideas. In the main this Datch 7ilt4 r
corsisted of calculating tte non-lineaiities for a
particular scenario with rcspuct to various para- We ha-e implemented a "batch filter'", based on
meterisations. Reciprocal Polir co-ordinates. It is an iterative

non-lincar least squares procedure for estimating
1936 Formula target tracks from pissive bearing data, and

calculates the suns if squares of residuals in terms
Be~le III suggested and Bats-s and Watts [21 confirmed of Reciprocal Polar co-ordinates. The program
that niavy nonlinear regression problems, of which currently only considirs nc,-manoeuvring targets.
the Bearings Only problem discussed here is an The batch filter is ued extensively Uy the Track
example, can be made much less nonlinear by making Association Algorithm [

4j.
a suitable nonlinear transformation of parameters.
Te-ney et at [31 discuss a related problem, and
propose a transformation that greatly improves on
Carte-ian cu-ordinates.
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Six 'jal precautions taken in the implementation of We calculated No and Np for a givr.i scenario,
the batch filter are as follows, firstly for Cartesian co-ordinates, and secondly

for the family of co-ordinate systems satisfyiig
(1) There is a need tc impose both a lower and an

upper bound on ) (the reciprocal of the target's B -

range). The lower bound is to ensure that the 0- = 4-
ta get's range remains realistic while the B
upper bound avoids the singularity at the - R 6-
origin. These bounds can be imtosed by
pivotinq last on this paramet.. and modifying where B and R are the target's bearing and range,
the data before the pivot so that it will take and w, and a ore constants. Note that we have
the desired boundary value. The method of Reciprocal Pol.r co-ordinates when o, and ^ -1.
pivoting is described by Stiefe! 151.

The scearrio is illustrated in Figure 1.
(2! It is necessary to have a safeguard against non

monotonic behaviour in the residual sum of cAiU=ancs Or zNoZIas• SMI1 - 0
squares, and can be achieved using a simple
bisection formula.

Benefits

Submarine 35
-- Reciprocal Polar co-ordinates are superficially

more complicated than their Cartesian counterparts,
but we suggest they offer the following advantages.

(1) The task of computing true least-squares
estimates of the target parameters is simpli-
fied, since we need fewer iterations and can
dispense with the usual Levenberg-Marquardt
modification to the Gauss-Newton method. In
"general only 3 or 4 iterations are required 2.-e
to get close to the least squares solution. 2om

(This solution 4s not, of couw-, dependent mtrt .an"
on the parameterisation used). SO

(2) The parameterisation allows the cemputation
of realistic confidence intervals for the
target parameters, and in particular che
current target range. This confidence interval
say be unsymmetrical, since we will often know
that the target cannot be very close but may
be much further away than our best estimate.
"This information is part ineiarly r-l.Žvant when
one has to decide whether 2 tracks can reason-
ably be attributed to the Par'e target. Obern0.tiaS *Wery 10 minutes

be9 arvatias &It.40Ohr iv
.3' rinally.atp-arly linper paramc:-7satiun :Alcws

- some use of sequential (that is non iterative)
"estimation procedures, and in particular the uze
of manoeuvre det-ctors based on cumulative sums

S ef the innovations recommended by Brown et al Figure I
(61 and Patel (7).

-- h The ship travels on a dog-leg course at 10 knots-- We have verified these theoretical advantages to tlhe making a bearing observation every 10 minutes,
extent of having Jdveloped the batch filter, which Observation errors are hULmally diztributed with a
"we outlined earlier, and a program to compute the stand-rd de, iation of 20. Altogther the ship makes
non-lInearnt-, for various parameterisations of a observiations. The target submarine is initially

typical bearings only scenario. In tne next section 5"nm from the ship ar-d is travelling at a ccnstant
we discuss this computation in detail. 20 knots.

Calculation of Non-linearity The intrinsic non-linearity for this scenario is
0.00191, while the removable non-linearity for

The possibility that a non-linear transfcrmation Cartesian co-ordinates is 0.547. Figures 2,3 and 4 71
of parameters can make a non-linear regression model show the value of the removable linearity for the
much less non-linear was mentioned earlier. This
"suggests that non-linearity can be split into two family of co-ordinate systems for various values of

types: Beale (1l called these Intrinsic Non- o, and a. These figures indicate that the pars-

linearity and Parameter Effects Non-linearity. meterisation with a, -0= -1 (i.e. Rcciprocal Polars)
neale y defned formulametfr E tnon-lnearity.such tht gives a minimum of the removable non-linearity forBeale defined formulae for non-linearity such that the scenario. Furthermore the total non-linearity

S No (the intrinsic non-linearity) is the minimum using Reciprocal Polar co-ordinates is more than ameasurement of ron-linearity taken over all para- factor of 12 less than the corresponding figure for
meterisations of the model, while Ng (the parameter Cartesian co-ordinates. These results justify our
effects non-linearity) is the total non-linearityS.y or sgive parmetrlsalon inusN@,original reasons for defining Reciprocal Polar co- "
for a given parameterisation minus ordinates.
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0.10

Further Work
0.4

The work described in this paper has investigated
the flon-lidoedrity of various parameterisations when
the obberved data consist of bearings only. However,

0.3 the bearing observations are often made in con-

Note junction with frequencies which can provide infor-
0 *imation on a target's closing speed.

0.2 -.. C0191

We intend in the near future to calculate the non-
linearities of various parameterisations when
frequency information is available. Such pars-

0.1 meterisation- do of course require a fifth frequency-
related k-rameter. It is perhaps worth noting that
our batch filter based on Reciprocal Polar co-

C crdinates has no problems converging when processing
-2.0 -1.5 -1,0 -0. 0.0 lata including frequencies.

We shall also be extending the batch filter so that
it can track ruanoeuvring targets by making use of

__,1-rit "ItK, ubl t 10112innovations.
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Summary 7

we hive pro-5osed the use of Reciproc 11 Polar
co-ordinates. as a means of reducing the non-
lin~earity of the Bearings Only tracking problem.
The co-ordinate system is suggested from considerin~g
the 1936 Formula, and was justified more formally
by calculating the intrinsic and parameter effects
measurer of non-linearity for a given scenario
using various para~neterisations. Practically, we
have implemented a batch filter, based on
Reciprocal P,.,lars, which minimises the sums of
squares of residuals. The filter works well and
converges quickly.
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STOCHASTIC CONTROL OF A PASSIVE SEARCH fOR OCEAN VEHICLES

LCdr. G. Z. Wilhoit Prof. R. R. Tenney '
U.S. Navy MIT/LIDS

,Rm. 35-213

Abstract exercised principally in i localizing search of a
given area to provide the best estimate possible of a

The problem of st..ecting r maneuver policy fcr
single-platform bearincs only search and localization target's course, speed and range at any instant in time.
sinthe- t fobeanisviewndas an stochasni loptimalicontrol Finally, based on all of the information prcvided from
Sin the ocean is viewed as a stochastic optimal control both the model and the estimator, a strategy will

___ oroblem. A solution is developed based on a realistic contain all of the necessary control logic to conduct
environment model and exteaded Kalman filter tracker.

Simulation results highlight the dominance of engage- the search.With these three major components connected properly [i-""-

ment geometry (e.g. direct-path vs. convergence zone) Withethese tree wricompoensonnect ad prp l
over maneuver policy with respect to total performance. a~series of strategies which seem reasonable can and

will be evaluated in an open-loop manner by means of
I. Introduction / computer simulation. By testing these strategiesSrepresenting various s~enarios of interest, the advan-
1.1 The Bearings-Only Probl.m tages and disadvantages of each can be determined for

Due to the complex nature of sound propag ation in different types of vehicle e-..ounters. Subsequently,
Due to the complapassie natu are h inou g p opeag n in the desirable portions of each strategy can be imple-the sea, a passive ac.oustic search involving ocean

vehicles inherently provides a minimum of information mented with the required decision logic to conduct

of a very noisy nature to the searcher. Currently the closed-loop simulations for final evaluation. 0
research emphasis seems to be toward developing methods II. The Model
to utilize the acoustic informacion that is available
in a more efficient manner. For instance, acousLic The ocean environment is an extremely inhomogeneous
doppler information can often be gleened from the and unpredictable medium in which to conduct a search.
signal spectrum of a target, providing range rate The acoustic intexictions betwe~n the propulsion
information on the contact. While this knowledge of machinery and sonar equipment on bard target and
range rate can be a tremendous aid in specifying the seach vehicles in these surrow dings make the passive
target's state (range, bearine, course and speed),it is search and tracking problems extremely difficult to
operatiQnaly eaey for an adversary to introduce suffi- describe accurately yet succinctly. -Although more
cient randomness in the frequency spectrum emittcd by difficult than many systems, the ocean vehicle search .7.
his vessel to make his acoustic signal unreliable for problem can be approached in a conceptual way as a
this purpose. Another area of interest has been to complicated control problem. As in the control of any
increase the acous-ic aperture of the hydrophone system, it is necessary to establish a model which is a
arrays on board pr..sent searching units. By measuring trade-off between two conflicting d-sires. The first
the time differencuc between the acoustic signals and most obvious desire i3 to establish a model which
incident to each h;dinphone combined with the array's is detailed enough to adequately represent the actual
bearing resolution, rissive target localization is system to be controlled. Secondly, an equally
p.ssible. However, with current capcilities, such an necessary characteriszic of a usef'il model ij that it
increased acoustic aperture is too large for feasible is simple enough to "solve" for a practical control
installation on searching vessels. Thus, the acoustic strategy. As the comnlexity of a system increases,
information availpble on each source is cftah limited finding an acccptable model whichi satisfies both of
to frequency, sound pressure level (SPL) and bearing, these desires becomes more and more difficult.
Frequency iniformation can be extremely valuable for 2.1 Environs nt "
use in target classifica-.on, but for tracking and _ ,

especially detection fun.-i.odis, it has many limitations An examination of the passive sonar equa-ion can
Due to the propagation vagaries of sound in the sea, provide a model which reasonably approximates most
SPL information may also be quite misleading. Conse- interesting areas of the ocean. In general, the most
quently, bearing information, although potentially important components of the traasmission loss will be
noisy, provides the best single means of target de- spreading,(spherical and cylindrical),absorption,
tection and tracking with current passive acoustic leakage and convergence zone effects. A reasonable
sensors in the ocean environment, approximation for most areas is the transmission loss
1.2 Approach expression for the mixed-layer case corrected for

convergence gain effects at the appropriate conviqunce.
The ap:,roach to the passive acoustic search ranges.

problem followed in this paper consists of three major The averae values of the various so:iar p. an,,tcrs
parts. First, a realistic model of the ocean environ- in-The sonrae e uation ca e usrid tonompu an robabi-

in the sonar equation can be used to compute a i robabi- . ....
ment including the sarcher and target vehicles will
be develooed in order to simulate the stochastic and lity of detection function to be used in the acteal
dynamie behavior in the "real world". The model will model implementation. This conversion from av,'rae'.

values to some type of probability distribution or
include the behavior inherent in its four ,.ajor compo- t
nents: the target, the medium, the searchi.-g vehicle statistic is necessary to nadel the intermittent fa
and thi searcher's sonar equipment. Second, an directions made at the sonar system. outpi, t for time,- ... '

varying SNR's r.,ar zero. From Knight's 13] de-
ationmatprovidedll bye developed which will irceSSakingfrm- scription of current digital signal processing techno-

atogynueprovidedr sbyeth, modelofasroanilaidofinmaking.
various search decisions. This estimator will be logy used in sonar systems, a graph of probability of
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detection versus SNR can be derived (see Section IV). 3.1 Bearjs_-L-(Jnly_•1/cking

2.2 Vehicle Dynamics The bearinr; 1 -only case of target tracking intro-

duc,!; some unuiual probitms. The many :,ourcs of noiseIn this model, target cou-ses and speeds cal lwi y affet recci'ed bearing •nformation in theb"
modeled in a variety of ways. While in this application oca -nvoect ae leady b nenrdatcussed Most

they were deterministic functions of time, Ltey could of the other roblueIs asleociated with beari.-only" "

be determined by any other desired function of de- tk intvolve tro' specific ieoth etris which are

termiristic or random variable. In the present case, involved. Convergence of filcter i used for bearings-

the dynamics of each vehicle were comsutei by only tracking depends on mans fac-tors. Target traject-

X:i+l) X(i) + L *VS*SN(VCl ories involving long ranges and small velocities may
make accurate solutions take lcnger to converge sin2e

Yi+±) = Y(i) + DT*VSCOS(VC) the change in bearing with time is quite small .51.

where A and Y - the cartesian Luordinates of the
vehicle Another condition of geometry which has been shown

DT 'the time difference buween h to have a very profound effect on tracking perf,,rmance

i and i+l oi'servations in the bearings-only ca!:e in the choice of coordinate
VS - vehicle speed system for estimator impler.entatio,, [6]. Since the

final fiiter configuration for any specific pro',lem

VC = vehicle course. will ultimately depend upon which reference fra"'- is
2.3 svemployed during problem formulation, it is not sur-

prising to find that Cartesian coordinates are used
The actual bearings between searcher and target extensively to formolate target rnticr. analy!;is (TMA)

were then computed by estimation problems in the context of the EKF. This
reference frame permits a simple linear representation

AS - ARCTAN((XT-XS)/YT-YS)I, of the state dynamics: all system nonlinearities are
where XT and YT = the cartesian coordinates of the embedded in a single scalar m'-asurement equation 17]

target Such a modeling structure is especially appealing for
practical application because it minimizes filter

XS and YS - the cartesian coordinates of toe computational requirements.
searcher-. Many non-Cartesian filters have been used which

These actual bearings do not represent bearings that possess significantly different, and perhaps better,
realistically would be observed in a noisy environment, performance characteristics than their Cartesian S
In order to model these observed bearings a zero-mean, counterparts [8]. In fact, there is new theoretical
raussian noise component with a standard deviation of and experimental evioence that seems to indicate that
.I degrees was added to each actual bearing. The statis- Cartesian filter implementations may be unstable for
tics of tnis observation noise can be relatively accura- single sensor bearings-only TMA 141 . Specifically,
tely predicted from the detection equipnent used; it these results ir.dicate that unique interaction and

implies an observation noise variance of R - .o'. feekoack of estimation errors within this filter render
it highly ýusceptible to premature solution divergence

2.4 robability of Detection Versus Pan and covariar-e collapse. .
Besides the large number of measurements that must 3.3 Estimator Architecture

be made, a L'.mitation of another kind is produced by
the nature of the medium in which sonars operate. The Th Q estimator chosen to conduct bearings-only TMA
sea is a moving medium containing inhomogeneities of in this application consists of a three-dimensional
various kinds, tooether with irregular boundaries, array ofExtended Kalman Filters with hypothesis
one of vhzich is in motion. Multipath propagtion is testing occuring along each of the three dimensions.
the rule. As a result, many of the sonar parameters By assuming that the bearing noise is zero mean and
fluctuate irregularly with time, while other change Gaussian, the FKF may be used to provide estim--.t: of
because of unnkown changes in the equipment Fnd the rarge, course, and soe.d e•ioi given bearing observ-
platform on which it is mounted. .ecause ot these ations in a large fraction of pns-.e_ canes. The
fluctuatiuns, a "solution" of the sonar equotion i- no probler is that in the bearings-onlv ca-,e, ini'ial
more than a best-guess time average of which is t., corse, soeed and range ir.fosr,afiýn is not readiiy
be expected in a basically stochastic problem. !recise avui1~'ble eon in ."co L' an h!KF to be effective, it
calculations, to tenths ,of decibels, are futile.. A most be initializcd relativelý k"'eae Lt toe actual
predicted sonar detection range is an average quantity soiurion. !a urdcr tr. overcor, this problcm we employ
about which the observed values of range are likely t ie teci!!.-ue of hypothesis testinj, hypothesizing 0
to congregate. Thus, the model supplies the probabi- courses, speeds, and initial ranges. Two of the
lity of detection vnreus range for the target of dimensions of the array of EK•"s will be baseo on
interest to be used on-line for target state estimation hypothesized discrete courses and speeds which span
and strategy formulation purposes. The calculation the set of possible targets. The filtcrs will then
of a specific prolbability of detection versus range generate estimates of the differences in course and
curve is included in Section IV for use in various speed between tne actual and hypothesized values.
open-loon simalations. The third dimension of the estim.,-:tor will coaosist of

.three initial range estimates, t~o ba•sed on direct path
111. The Estimator and one or two based on cor~verjonce zon~e range! of

T'here are many istima~or designs in the literature det6ction predictions. Thus by observing only bearings

which have been appiied to various search and tracting with nois, this array of ErF's will estimate ranges

problems. For the passive oceai, search problem there and bearings to the target and differences between

are several factors which will influence the selection estimaced and hypothesized courses and speeds of the
of the estimator. For a bearings-only search and track target. By hypothesis testing based on the co'.,ari.arcescenario the dynamics of vehicle motion are represented matrices computed during the tracking evolution, some

sfilters will be turned off and the "mostý likely" 0
by nonlinear equations. In this case involving filters to be "correct" will be left running.
imperfect information, the implementation of ,uch an
estimnator is by no means easy.
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3.3 The Extended Kalman Filter P 1.818 1

The Extended Kal.an Filter Equations are as :ollows 387 .59181
[21. The state vector used in both mean predictionand mean update steps is 5918"

and
X - :F:

18: dX'2 - .6478
.DC, 00376tDS t 1633 ''•.i..

where R - target range from Learcher "31 3 .3" 3.'

B - target true bearing from searcher Again, the non-diagonal elements of the matrix
DC - delta course from hypothesized target course were assumed to be small and were neglected.
DS - delta speed from hypothesized target speed ,. .,.e.,.T.,

3.4 Hypothes• s Testing_, ."-L-
The reason for picking a non-Cartesian state vector

have previously been explained. Finding the optimal All of the computations thus far have assumed a •
non-Cartesian coordinate system was not the goal of prior knowleJgc of the target's course and speed. This
this effort. This coordinate syst.m is used since it information is provided by hypothesizing various combi-
uses the same four parameters; (range, bearing, course, nations of course and speed, one for each Extended
and speedi,that are used operationally and thus are the Kalman Filter. Initially, twelve courses and twelve
most logical parameters to extend directly into strate- speeds were hypothesized to test the filter. The hypo-
gy f-raulation without needing prior transformation. thesized courses started of 000 degrees true with ;J

increments every 30 degrees and the speeds were at
Since the state dynamic equations are nonlinear, a increments of 4 knots rtarting at 0 knots. As the .

linear approximation to the A matrix used for co- final implementation including the sume of the 2 matrix
variance prediction must be used. A first order liaear terms became clear, a reviei Of the filter's ability
approximation was used such that the rowb of A are the te
partial derivatives of the predicted statq with to determine if this initial discretication of nypo-
respect to tie previous state vector. thesized courses and speeds was valid.

.he pr~dictlon includes the normal addition of tun- A criterion of having the hypothesized values
certainty 1to the ccvariance after transformation to paced no more than four times as far apart as the
account for the dynamics. An additional term, 1, is average filter estimate errors seemed to ensure '
necessary for the nonlinear covariance prediction to adequate estimator filter overlap. Fiom the test runs
account for higher order terms in the '.aylor Series
expansion that were neglected in obtaining the A matrix. conducted with the appropriate Q matrix sum terms,As used in this application, t and i were a sumed average absolute errors in couses and speed of 7.5

degrees and 1.5 knots were indicated. Therefore the
constant and an approximation to their sum was obtained final hypothesized oorses were taken every 30 degrees
empirically. In irder to firnd this sum a series of in a circle starting at 000 degrees true for a total
sample runs was conducted with the searcher in various of 12 different co,•rses. The hypothesized speeds were
opening and closing scenerios representing the full taxen at increments of 6 knots from 0 to 42 knots for
range of searther-target aspec%;s. A circumnavigation a total of 0 different speeds.- -

of the moving target vehicle by the searcher was
primarily used since it exhibited a wide variety of Time final estimator consisted of three banks of
angles of incounLer. First, an estimat of each 96 Extended Kalman Filters with all of the expected
diagonal term in the Q matrices was made that was .ourses and speeds dircretized in each bank. Two bank-
about two orders of magnitude below thc: initial errors aZ filt'rs were initialized at two direct path ranges . . "
to be expected in practice and used in the simulations, of detection. Two initial direct path ranges were
With these values serving as an initial baseline from chosen since by adding the range estimate error deter- -
which to start, runs were made while varying these mined to be acceptable for the EKF performance Ouring
values one at a time three orders of magnitude above trial runq to these two initial ranges, the lotal
and below these oricinal values, encompassed range band approximated the expected errors

on the range pzcdictioa pi.ovided by the sonar equations.From these initial tests, a first approximation of The third filter was ini-ialized at the ;redictep range
the "best" value for each of tr.2 four diagonal tezma ni detection iiA Ui first convergence -One. Sinc U-. .
was determined by comparing the diagonal ernient, of first convergence zone - the narrowest cinvergence .. ..
the upjdated covariance matrices gunrexated with the •only one inJz.? range was required to match tne
-L"t,_2 erru,. on caý-h state squared. The criterion was zone, oe
"to pick Q values which caused the co-puter filter EKF's range error performance to its expectea width.

covariance matrix to best match the magnitudes of the The only reraining requirement to implement this
squares of the Ftate errors. These new values of Q hypothesis testing scheme is to pick some statistic
served as a more precise baseline from which each of generated by each of the 288 filters on which a
the values of Q were varied again. By the fourth base- decision, "correct filter" or "incorrect filter" could
line of Q values, the Q matrix sum was within an order be based. The statistic used was
of magnitude of the "best" value on each diagonal term 2 2
and the covariance terms were within a factor of three X RES /(R + P(2,2))
of the squared state error terms. The final value where RES = the residual as coputed durir.a the .•ean
obtained from thie iteritive opt..mization procedure update -

R - the bearing observation noise vari.,nce
-. .OCl P(2,2) - the bearing covariance term from the[ .000) l1 covariance prediction.

.0101 For each subfilter, this computation would result "n a
. 00001 X2 (chi-square) density function with one degree of

where a typical resulting filter covariance matrix and freedom if the problem were truly linear and Gaussian
squared state error matrix were t91. For the correct filter, the expected value of %

this random variable is unity, indicating that the
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actual bearing errors are of the same magnitude as 1. initial detection on target's beam
the predicted bearing errors plus the observation. 2. initial detoction 45 degrees off the target's bow
noise. This statistic should have a 'Tigher value for 3. initial detection 45 degrees abaft the target's
all other incorrectly matched filters. In order to beam
sm~ooth this performance test and look at the recent Tisdsetaioofrlivapcswscosno
filter history, the actual statistic implemented was as do coer atnoa of rtive aspets asic h

as to cover a manor portion of the target's azimuth
t) 2 " alia * RES 2/(

R 
+ P(2,2)) while holding the increase in the required number of

t runs to a factor of 3.
4. ( - apha)* x~-l)2 The searcher pointed the initial contact bearing

where by setting alpha - 1, the most recent ten minutes and commenced a zig-zag search on that base course.
of performance were evaluated. The logic usea to turn Three zig angles were used from the base course.:"

off diverging filters was set in the range X^2 I1,5J. 1. 30 degrees
This range of value was chosen to oltain the "best" 2. 60 degrees "'" .

10-30 filter solutions by the end of the run.
3. 90 degrees-

IV. The Strategy In addition, three different zig times were used durin,

4.1 Simulation Options the simulation.
In comj~arison with decisions already" made concern- 1. maneuver every 5 zninut,Žs ..2. maneuver every 10 minute,-

ing model and estimator implementation, Ficking a 3. maneuver every 15 minutes.
limited number of meaningful simulation scenarios was 3. . "m

mu'.h more difficult. The clear desire in this case was These maneuver angles and frequenzies werT chceen since
to select r~alistic strategy options which would' they seent to bound the most interesting rang.' of values. 'r r
providc the most "insight per run" and still keep then Each of these 27 runs was made under two different
simple enough so as to minimize any coupling which initial range conditions. One run was made with the
could cloud their relative b ,nefits. initial detection made at a range predicted by dire:t

One of the most important deicisions a searcher path acoustic propagation. The second run was made
must mako after an initial detection is how to maneuver with the initial detection made at a renge predicted

mustmak afer a intia detctin i howto anever bý convergence zine acoustic propagation. The probabi.-
so as to acquire as much information about the contact it ofvetection andurang results om Se -
i possible in the shortest period of time. In the lity of detection and range results from Section I

bearingmaonly zase,it is clearly important for the were used for these two propagation paths. i.--
searcher to maneuver, influencing the bearing inform- The implemented target is radiating a 500 Hz tore S.
ation received in such a manner that tCie set of feasi- at a source level, of 160 dB L1J. The tran misrion
ble target states is &educed as much es possible. loss is computed using the sonar equation with
Often such maneuvers are limited to courne rather spherical spreading out to a transition range,
than speed changes since tse searcler would like to run Ro - 3000 yds,, and cylindrical spreading beyond, plus a
at a speed whicn due to self-noise provides him the. loss proportional to range. A noise background equiva-
highest acoustic advantage. Thus, a simplified lent to that of the deep sea in sea state 3 on a quiet
version of this strategy decision would be at what searching platform implies NL - 66 dB. The receiver
angles and at what rate Fhould course changes occur characteristics are modeled usinq incoherent energy 0
for optimal target tracking. processing in a receiver band 100 Hz wide having a

A second and slightly more obscure factor of probability of detection equal to .5 with a .01 false

interest is the initial "spect of rncounter between alarm probability. The required receiver observation * .• *"*

the target And searcher. At first glance, this factor time under these cQ.,straints is 15 seconda. Using anthetagetAn sarcer A fistglace tis acor absorption coefficient of .4 dB/kyd end the passive .- %.
asinearm to be a poor simulation variable since under a
most conditions, the searcher has very little control sonar equation, trasmission loss 86 dD.
over the manner in which he first confronts the target. A convergLnce zoine with a 10 dB gain centered on %
However, the initial geometry of target detection is 30 miles is assumed with an intermittent contact pro-
irmort,,nt since by studying tracking performatice under bability of .75. For ease of implementation a step
these different initial conditions, the more -%dvan- approximation to the curve of Figure 4.1 is used with a
tageous target-searcher aspects can ba determiined. uy worst came probability of .5 for the direct path case.
using this information, t-e beercher can improve his The abnorption coefficient for both ta:e direct path
tracking performance by ma ,Puvering i.nto a more favor- and convergence zone ra-ee is .4 dB/k.yd. The expected.
able target-seatcher aspect th.-tz '.z fi;st encountered. direct path range of detection is 19 kyds. The result-

The factors already discussed are impor it- prima- iag proLability of detection as a function of ran-e
rily due to their -iuc:ctric-. Another factor which is curv- used in the simulations is depicted inAFigure 4.1.
of particular importance due to the complex acoustic
envirornment already' disciassc4 is the propagatic-i path
by which the signal is received. ba'z-d only on bearing
information, the difference in the initial range of 1. ,
detectior between a direct path and a convergence zone (P
contact could be a factor of 4 times or mora. We would
expect the most desirable strategies to be quite .7- T
different between the different path and converoence
zone propagation c€seeh wth range differences this .5
large. Therefore, tie propagation path is also includ-
ed as one of our simulation variables.

4.2 The Simulation A.

The simulation consisted of a maneuvering searching 8 10// 28 32
unit and a constant velocity targe.. Tie simulation 0
was run using three different target-searcher aspects; Range(noutical miles)

Figure 1
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4.3 Sý.%tem Validation, 141 Weiss and moor, *Improved Extended Kalman Filter
Fhe actencuragng esut ws tht i al 54Design for Passive Tracking", IEEE Trans. on

Auto. Control, AC-25:4, August 1980, 807-811.
simulation runs, the filter that was hypothesized to be
the correct filter based on the chi-square statistic [5] Petridis, V., "A Miethod for Bearings-Only Velocity
was either the "correct" filter, 000 degrees true at and Position Estimation", IEEE Trans Auto Cont.
6 knots, or an adjacent filter. The only qualifi- AC-26:2, April 1981, 488-493.
cation to this su.-cess was that the estimator was not Aidala, V.J., and Hamel, S.E., "Utilization of
always able to distinguish between the best direct L6] ifda Volar aod nates for Beaings-only

Modified Polar Coord-nates for Bearings-Only
path and convergence zone solutions. However, this
inability to distinguish between tho two propaga-
tion laths is a very real and important problem which March 1983,283-294.
is encountere~d in actual passive acoustic search (7) Aidala, V.3., "Kalman Filter Behavior in Bearings-
cases. Only Tracking Ap.•lications", IEEE Trans. Aerospace

The major problem with the estimator resulted from Electroni Systass, AES-15, January 1979, 29-39.
its instability at ranges less than about 3 n.m. At (8] Johnson, G.W., "Choice of Coordinates and Computa-

these relatively close ranges the non-linear aspects tional Difficulty", IEEE Trans Auto Contr. AC-19,
of the geometry tend to dominate and the linearized February 1974, 77-80.

covariance prediction became inadequate. For this
reason, most of the data for the direct path cases was 19! uVan io T heory, Dtcohn, Esi atin, and.Modulation ThorJohn Wiley & eons, Inc., New " "-•'• '
taken after only 15-30 minutes into the run while "'k N.'. 10

ranges were still greater than 3 n.m. Althought the York, N.Y. 1968, pp. 107-116.
convergence zone run data was all taken after 60 minu- - ..
tes into the run, the convergence zone had a much
greater incidence of intermittent contact, receiving
bearing information only about 75% of the time. Given
these liminations, It is not surprising that the
"correct" filters in each case were unable to signifi-
tantly reduce their initial speed errors. In the

direct path case, range errors were reduced in rela-
tively short periods of time. However, in the converg-
ence zone runs, with initial range error3 as small as
3%, tne estimator was only. able to maintain the error
margins approximately this smalL.

While c.kear differences in filter performance with
respect to speed and rarq estimates were absent,
there was a clepr difference in filter estimates of
target course for different initial target-searcher
geometrics. In particular, the searcher's estimates
of targer course during the bear. aspect runs were._
consistently in error by 3-5 times the errors en-
countered with the other two initial geometrics.

This difference is again tuite consistent with actual
prac%.ice since a searcher presented the beam aspect of
a target is in the worst possible location to detect
relatively minor changes in course (or course errors).

II. Conclusion

The primary purpose of this project, to actually
build a realistic ocean acoustic model and estimator
for open-loop search strategy formulation, was
accomplished. The various simulations which were run
confirm the feasibility and per forrance of the system
au a tool to be used in further strategy assessment.
Even t/iough any comprehensive strategy formulation
would ha'e, to be based on using this system on a large
number of Monte Carlo type runs, several strategy
cn:cupts suitable for a more global closed-loop imple- ..
mentation, came to light with only a limited number of
.uns.
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(n) mv'n) zero-mean. uncnr'elated Cauiis;ian -

Cumr x " additive noise ior the nth rath

-"rh basic poimin orean dtcinof msrrc'whand
caustic sinnals is studied for unqaturbted sound pro- Furthermore, the envelope and the phase of the total
acation. whereas considerable Proarems has been made sional are defined As:

ovarls modelinci the more qenetal case of rArtially 0 X 21/2
aturated acoustic detection process. notection is de- (2+ ]
mned as occurrina whenever p , the ~short-tim-. averAce )

oot mean souare pressuire at thexeiver, exceeds a -tan 
1

(Y/X)
pecified threshol.d level #)a . Tn this paper, a two-
tate, discrete-time Markov model in first derived for. At short rannPes and low freauencies, or for stable
.he unsatua~rted ocean acoustic detection process. channels, the propaqation is said to he unnaturated and
Ilosed-form expressions for the prohah

4
Aitv mass func- the Probahility density function (Pflt) of p isi Rician

:ions (PMF's) of the number of time. steps separatinct and independent of tne number of paths [I1I. (in Rec-
!ither two succissive detectionn; (nterarrival time.) or tion 2 the distrihutions of p and its phas& * are

mne detection and the first subsequent "downcropsina. presented).
holditna time) are presented.__&Xreqsions for thw--Asficetylnrae ndohih reu-
ioint probability density function (PDF) cf p at twoA ufcety oarne n/o ihfeun

lifferent points in time are obtained and used to die.- cies, the propanation is fully saturated, which means

:ermyine the relevant ono-step t~ransitiun prohabilities ta h hs fp*i nfrl itiue
if the Markov model. Results usinq the model for vari- betwee-n n and 2w , or each path has a phase On that

)us alus o itt.-a",tramter ar alo peseted is normally distributed with a standard deviation

anid discussed>' Another Markcov model is next derived > 2* . In this rpqime whfen N 3- 4 andi the sinale
!or partially saturated narrowband acoustic aian,-l pro path Amplitudes rn are approximately. ecua' , phase
mqation, and cloned-form expressions for the Pt~f's for random multipath nronacation is obtained. It has been
the relevant interarrival 3nd holdinq times are preqen- fud(1ta h neoe po ul auae
red P The joint PPF of p at two different points in phase random proceý-sa obeys a Rayleiqh 20!'. Morecver,
time is obtained from a rather qe~noral conditional several other statistics and joiint Pnrls for the phase
P0!' already derived by Middleton and checked to re- random process have ho.". obtained, and are sum.aarized

Idce to the limitinq cases 3,1 the fully saturated and in (61.
ansatursted processc%. Future research say include a
lirect derivation of thJ: pattially saturated- model. At intpernedipete rannes, wthere the signal experien-

comparina both models with data availahle to us as well iaeoc etrain ntecanls htech
as with arpropriate versions of 4the current me~moryless can he chepracterizoed as a cMiusnian raidnip variable ...

*state-ot-the-art"*(A, a) model, and finallyv usino'each bu~t wi th mi standard deviation < 2w . iuartiallv natura-
model in reso-irce allocation schemes for taraet track _4ted virparvation is cbtained. The f'eyurncy/ranqo 1
ing, alonq the lines of previous research of tho first boundaries between the unsaturated, pertially satura-
two authors. ted, and fully saturated rervines are dependent upon the

ocean dynamics or boundary dynamics of the propaqiation

1. Introduction channel. aq well as the mannitudep of any rel-itive
source-receiver motion. Fnvelopeo statistics for siq-
nals in the partially saturated roqime are presented in

In qeneral the quadrature components of the enve- (1). As the variance of the sincUte path phase noes to
lope of a r..i.:rowhand c T*an acoustic multipath process zero, or becomes larqo. the first order PTW's converc-,e

are give by [j)to th~e unnatural-ed anti fully saturated resultnrsl~c

X - , (~cos,.~+ ~~n)1 In previons ruhlications [7,R1 of the. authors,
.- continuou% and Aincrete-time detection models usinoi the

results of Phase randrym acnuistic propaqation (3,A1
. hay, been formuilate. *Detection" was de-fined as an

. ) (Inrinen + My(-k) uncrossinq of random variable p (the root mean snuiare
n- n prfssure. at the passive sonar receiver) over a speci-

fled threshold Pp . A continuous-time model was first
where developed for obtainincy the pPn's of' th.- tine between

two successive detections (interarrival time) and of

N - number of independent paths between source the tine between a detection and the first sunsenutent
and receiver downcrossinc, throuoh on (holdinq tim") . 'Me model

was then compared with the. extensively used VA,o) model
rn-the amplitude of the nth path and tith Available acoustic data. Thin model was %pen

to exbhiit similar lono-tersi behavior hit markedly dif-

On - the phase of the nth path ferront short-term characteristics as compared with the
CA'a) model, a fact which is due to the memory of the

process. Comparison with data has demonstrated, in
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most c -sea, a significantly improved prediction capa-- prob (pi )- 00 I P2 < PO) )C
bility over the (l,a) model.

In the tas-morylass case, a h I *and
Subsequently, a tvo-state and a four-state dis-

crate-time W'rkov detection model wer- developed and
closed-form expreisions for the proba-hility mass furte- a -proh(P 2 < 00 1H 00o) -PrObMP 2 ---

tions of the correspondingi intt-rarrivdl and boldinci
time. were derived. I¶he results oitained u,.ino 'he < ~on~p < on) -prob(0 2 < On)
latter widels vore favorably compar..d with both the
continuoui-time models and the data, the irsiAtest its- 00 PS P0
provement over the continuous-time models Wying in the or a- f f(P) dp 1 0 (,- 6
much lover computational effort involved. 0 an an

In this paper, discrete-time detection moepls are w2.'th f(P)W as in (3). .

developed for the unsaturated case, first for the *mom-
oryless* case and then for the general "menory" Markov and tie gieneralized 0-function defined in .15) as .

case. A discrete-time detection model is al o proros.e4
for the partially saturated acoustic propaciatiin, wh~- M.1 42 + E
is shown to reduce to the two limiting rpess o. f~illy v(,1-f~() ~ - - Iq (GE) dt
saturated and unsaturated processes. Conclusions ard a0 2 (7)

suggestions for future research form the final section
of the paper. 14 1,2,...

2. Modelingi the Unsaturated Dletection Process vrom (6) , we can proceed to evalttate- the proba-
bility mass funct'onn for the jjaterarriviel and holdin',

The probability density functions for the root- time. In general, these WF~s take' the form [Ri
mean square pressure p and its phaqe # for the un-
saturated process are derived in ref. 1. 'Me density PH(k) =(I~a)k-la, k -1,2,....(holding time)
of p is Rician:

f (0) - exp ( -y- ~-) 0(p -at

(3) 7-Z

n -2,1 ....dintorarrival timel (9)
where

in the memoryless case, (9) becomes
RS the maginitude of the constant signal vector

W(-a)
1m % odifiel Pessel function of the first kind of P1 (n) 1 (1-a)n-I i-1 )1J 2, n 23,....

order a (1-2a)

2n 2 NON x
2 

. NON 
2 

,where(1) *

n) , of In the non-trivial case (a~ub*1) the calculation .

Oy2  . the variances of NX(n) and N y o the transiti:)n probabilities requires knowledge of .. ::
respectively, as defined in the the joint density function f 0 ( : 12 ,0-2) . This
introduction second-order 4tnsitv has &Irea Vbee. derived in a*..* *~

rather general form by Middleton's 141 treatment of
In our previous ?4arkov modelingi of the phase ran- the s'tatistical properties of 'additive narrowband taici

dom process (fully saturate-i sound propagation), a two- nal and normal noise processes.
state model and a four state model were devetoped.
(7,81 Comparison with data (81 has revealed that both tisinci Middleton's results and after extensive
models, when properly calibrazed, Yield very satisfac- ailgebraic maniptilations, us obtains
tory results, the two-state beinq consistently as ac-
curate as the four-state model. (io)- 0102 01 2 ,0'22

We will henceforth restrict ourselves in develop- O~tT41-r 0
2
) 2aN

2 
1. -

2
) - -2

inq a two-st..te markov model for the unsaturated~ pro-
cess of the qenpral fonrt shown in Figiure 1. A0 2

1-b p(1r)*.-

b 011
2
(1-r0

2
) 0?42 (1'.rp I

U A0 02

a
where c 1 Cm 2,m t-i1,2....

Figure 1. 'No-state di-crete-time Markov modoil
It is reasonable to expect that (11) will reouce, for

where *t1 - "up" state, defined by p ), po t + to the prcyluct Of f01(P1 ) .fP 2(P2 )
**- "down* state, defined by p < p Since ro + 0 for t .- (uncorrelatedness), (it)

a . prob (02 < On Pi P~On) (4) givest
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, P22 0 022 + 2AO2 11
2 - exp (" ) P)*1 - 1 - - (22)

%1N4 20t2 Pu :'

0 To O02 P11 I - P12 , 022 I 1 - P21 (23)

ON2 where P. is the (unconditional) probability of 0
being less than 00 . 1fforts to simplify the evalua-
tion of 11 in Ph. (20) wer. not successful. T'he

(x/2)m 0, m 0 double numerical intearation of a function involvinq
nce Im(x7 - (13) the infinite sum of products of three modified Possel

x+0 m! I, m * n functions was expected to and did actually produe- .
computational problems (excessive CP1J time) , Theme
were partiallv alleviated using the asvmptotic proper-

(12) can be rewritten as ties of the Petssel functions involved, in determinino
the tolerances emploved in terminating the evaluation

P, 012 + 
2
O Apo1  L2 of the infinite summations. Still, for extreme (that

11'02 (P1,P2) exp (_- io (-•-) - im, too small or too large) detection thresholds, the
ON N272 ON2 computational effort is unacceptably larae. However,

t this is not expected to he a problem in practice,
since we do not wced to use such extreme thresholds -

*1 2 AO OP2 in fact, they remult in vmpmorvless M~rkov Models and
exp (- ) 0 (14) the problem does ..ot exist, since the eval,:ation of;;N2 ) -,,,..

the relevant one-step transition probehilities re-
ouires the knowledge of just the unconditional distri-
hutions.

.e. fP1 '02 (P1,02) + f 1( pl) fP2(P2) (15)
implementing the Model

t *
'The Markuv model for the unsaturated detection

a can now proceed to evaluate the one-step transition process was used with a variety of - hopefully appro-
robabilities of the Markov model. priate - inputs for the parameters involved, namely

on!2 , v , RS , T and po . 1o comparisons of our
predictions with real acoustic date that could be

12 A- f f fa12(01,a2) dpi do2 / fo (p)dp appropriately modeled as unsaturated sound propagation
0 Oo 0o (16) are presented. However, we do have such data at our

disposal and we are Planning to use them to that ef-

0p P0 00 fect (see section 4).
21 = b " f f f 0 1p 2 (PI,0 2 ) do, dp2 /f f0  P)d

0 0 0 (17) Fius. 3-4 ore.ent typical results using ap
2

1,.5A , R% - 2.23 , (RS2 - 5.7 V I ,2Hz , a time step ,

of .4 see and thresholds P0 - 1,5R, 2.37, Ad 3.16se
Ind P11  I- , P2 2 - - P21  (1) In Pios. 3 sa 4, and for the Po - 3.16 threshold

only, both the histogram and the *outline" (i.e., the
.%e double integrals in (16) and (17) can be evaluated continuous line Passing through the too midpoint of
a functions of each bar in the histoeram) of the corre, o,.dinq PTP'

were drawn. For the other two thresholds, only the
S 00 00 "outlines* were plotted, since includino their histo-

, f P2 p012 (1,,,2) d(di2  grams would mst probablv reduce the legibility of
oII O O these figures. of these -vlues, vN

2  
and . were07

picked from an unsaturated examole (1) and the rest
%lthouqh 11 is symmetric with reapect to 01 and were chosen by the authors ani are more or lees arbi-
02 , it cannot be expressed as A product of one func- trarily. It is clear that, although the density of

tion of 01 and one of 02 • Instead, we can rewrite the holding time is very sensitive to the magnitude of
(20), taki'. (11) into account, as follows: the detection threshold, the density Uf the interpri-

val time is much less threshold dependent. 'his. re-
P- 01 012 A02 minds us of what we would pet in a pure sinusoidal

-1 f -exp) - siqnal situation, %here we have a constant interarri-
0 ON (t-o02e 20tO2(1r0n2) . val time (equal to the period of the sinusoidal sig-

nal) but different holding tires for each threshold
(Figure 2).

_P0 022 - 012..':'',.

I 02 "xp (- 2 0002' Such a result vms not observed in -ýur previous
0 2  

m~ "ON(-00) study of the detection process using the phase random"
model for ocean propagation [tl . In the unsaturAted

.1001 A002  case, p~t) is obvlou.ly not a strict sinusoid and
2* ('(+0) (e ( 2)) dP 2  do1  (20) hence we do not get the above 4 - function densities"al (O On
2
(N + for the interarrival and holding times. Still, Fip. 4

showe that the timingi of datection events (i.e. the
In the above, A0  is identical to Ps of acm. (3). distribution of the interatrival times) is almost in-

dependent of the detection threshold. this threshold
Havinq evaluated - , eqns. (16) and (17) can be makes its presence felt only in the distributions of
expreesed ast the holding time, in which we suite obviously have

shorter noldinq times for higher thresholds.

12 - (21) Figures 5 and 6 demonstrate the relative insen-1 -u sitivity of tha above results to changes in the time

Stcp T Fiqs. 9 and 10 correspond to T - .8 sac., , .
i09"'"""•

Z._ _*
.,...-::



or twice that of Fiqs. 3 and 4 wit)' which they have Finally, Fitis. 7 end A present the results oh-

all oth-r inputs in common. tained usinq the unsaturated model with RS - 0.0 and

other input-t as in Fiqm. 3-4. Typical unsaturated
propaqation involves a larq, RS (conta,.t vector)
and additional Gaussian itoise, and the RS - 0 case

could he perhaps more "naturally' Jesrr ihed by a phase
random model.

:-.. 41
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VI 201 Y2102" I I,, 1' COS M (421-¶12÷40)"* - s . 12 O N
2 

(1 -k 
2  

) O2 1
2
( 10-k(

2
2S

" a• [ with * not explicitly appearing on the rioht hand
. side, and %

12 ( A1
2 +k 0

2
A2

2
-2k 0 AjA2 COs(C 2 - £1 * *0)12 •

"" 4' IkOA 2 Rin(E 2 + #0) - Alnell"-
. -•*12 - tan'- I"

-.2 12 . 2 -*21 and Alcosc` - kOA2 cOs(5 2 + *0),

"21 anti Y21 are obtained by interchanying
suhscqripts I and

0. 12. 18. 24.
t(sec) R2(AI,A 2 ,CIC 2 ) - expR.-[A 1

2
+ A2

2 
- 2knAIA 2"Figure 8. Interarrival Time, 0 - I.58, T - .8 see.,

RS - 2.23 COs(e 2 - f1 + *0)]/20N2
(1 -k2)"

• . 3. Modelinq the Partially Saturated netection Process - *0 " tan'i
t

A0 (t)/p0(t))

Followinq the notation of thv previous section, - ko (r 0
2

(t) + AO2(t))12
A the first-order PtF of p for i partially saturated

* process has been derived [1 ani is of tht form% - rro(t) w r(N mCl V2/

PA -1 O(t) - p,(Nc IN2)/ VON2
fo (p) - x -1

S-"2waxay (Ixy2)1/2 2(loxy2)
* ~ ~~~~ 2faGC0~ 2?O~~ n - Wdt - t

"P2 +2Ux
2  2

0xyvxpy 0
2

+24,p
2  

- W " W - 0O
-- + 22 I x

"'. 2 x axoy 
2  

Since a partially saturated process essentially

consists of an additive narrowband signal with Gaus-
2W -1 sian noise superimposed, (25) should serve as our

f exp [a cos?24) + b sin(2#) + second-order density 1121.

"0 2(1 _7'x
2

)
Necessary conditions for this to be true is that

c cos (4) + (4 sin(#)] do (24) the second-order partially saturated density should -

reduce to the densities of the limiting cases of fully
* -- * where, saturated and unsaturated processes.

a •. a 02(1/2,2 - 1/20y
2

) Three assumptions are necessary to reduce 1". (2)
"* to the unsaturated case: 1. the signal is an ensem-

a. "ble of unmodulated sinu-soids (then A, 1 A2 = A0,
. b -p 2. fe - fO , (thus od - 0) 3. the noise spec-0

x
0

y trum is symmetrical about f. - f 0 . It then follows P

thats
2
pxyay 

2
U•x

. C
0 (t) - 0 , k 0 - r 0 (t) , and $0 0

.x~y Ox
2

- - - - --and the following simplifications occur,2
Pxyuy 2

1iy.d -p 2 - ¢

Oxoy Oy2

R2 - exp(-A02/[oN2 (ro + IM]
Fcr a memoryless Markov model for the unsaturated

process, (24) is adequale. for the general (memory) *12 - *21
came, however, we need to krow the joint PDF f0102

" (1,p2) . This is given by Y12 - Y21 - tA 0
2

(1+ r0
2 

- 2ro)1
1

/
2  

A0 0(1 - ro)

fP'92(01,02) f fPoP2 (Pl,o 2 9flf)(*)d* , where Finally, (26) becomes:

f 4oo)-(~2 o(I-r0
2))

f(Pl,P 2 14) conditioned upon a general set of 1Pl 2(PI'02) 2 [PIP2/°N

parameters is obtained in (9) as: exp(-p12+02
2
1/[20N2(1-r02)M)exp(-_AO2/[oN2(rO+I)])x

P102 -(O12+P22 2) £mIm(r0p1P2/ON
2

(1.r0
2

)Im(AOpI/0,q2(r0+I))

fo102 (01,p2 14) -exp
0N (f-k0

2
) 2oN

2
(1-k02) rm(A002/6N

2
(r0+1)) (26)

k00 02 (26) is the second-order P1F for an un"aturated
B2 (AIA 2,I-C 2 ) E Cm X 1 process, coinciding with (26) of r121.;.'- O~N

2 
( 1-ko

2
)"

- For reduction to the fully saturated case, two

assumptions are necessary. Since observed S/N ratios
for fully saturated samples are very low, the signal
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can be modelled as pure noise. mhus Al A2  0 * se<uential hypothesis testinq algorithms of (101 that

Also. the noise spectrum in s)mmetrical about fc = will help us in signal vs. noise. target vs. several

f* . hence false targets, data associatio., target identification

and other relevant problems. No changes need to he

Xolt)- 0 , k0 - r 0 (t) , and 40 - 0 • made in thi algorithms of (101 other than substituting
the chase random model for acoustic propagation with

It then follows that: the unsaturated model developed in this paper.

I £1 C ¢2 , Od - 'c B2 and Y12 Y21 0- Acknowlelgeants
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0238. A summary of the un:iaturated detection modell-

f 9 0 (P1,0 2 ) - [ 1Pp 2 /UN4(1-r 0
2

)1 ]xp(-[p1 2+p2
2 1/ inq will appear a' a correipondence in the Journal of

.2 the Acoustical Society of America. We are indebted to

02N-
2
(1.r6

2
))) T0[ro1P 2/o 3

2
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turated acoustic detection process was presented and (4) Perakis, A.N. and .14. Psaraftis, "Oiscrete-Time

* proiability mass functions for the interarrival and Detection modelinq f3r Unsaturra-d Ocean Propaqa-

holding times were derived. mhe unsaturated mode of tion,' torkinq Paper Mo. nPt-ONR-Q2-2, October

. acoustic propaqation was seen to exhibit different 1982.

chiracteristics than the previously developed phase
random acoustic detection models. A major difference (57 Rappaport, S.A., *Computing Approximations to the

between these two modes of acoustic propagation lies in feneralizod 0-Punction and its Complement," Cor-

- the narrower (for the unsaturated case) distribttion of respondence, 5.RJ.E.. Transactions on Information

• p . which approaches a normal density as RS grows Theory, July 1971. pp. 497-498.

"lauie. A more striking difference lies in the relative
independence of the Interarrival time *MP to the detec- (6) Mikhalevsky, P.M., Pirst Order Statistics for

* tion thre' 3ld po for the unsaturated case, a property finite handwidth mlti--path signals with and

not observed in the fvlly saturated models. without frequency or phase modulation,* J.i Acoust. Soc., An. 66(3), pp. 75'1-762, 1979.

In the third section of this paper, a diserete-

"time Markov model for the partially saturated detection (71 Psaraftis, M.N., Perakis, A.N. and Rikhslevsky,

process was presented. The second-order POP of p P.M., "New Models for the Ocean- Acoustic fetec-

has been conjectured to be one preaented in (91, (ap- tion Process,* J. Acoust. Soc. Am., 69(6), 1724-

Spropriately inteqrated over the conditioning set of 1734, June 1981..--- -. _ _

parameters )l. It was also shown that this PDF re-
"duces, as required, to the limiting cases of fully sa- (81 Psaraftis, H.3., Perakis, A.N., and Mikhalevsky,

* turatad and unsaturated propagation. Clearly, once the P.M., *Memory Detection Models for Phase-Random

-- joint PDP is obtained, the PDPs of the interarrival Ocean Acoustic Pluctuations,- International Con-

-. and holding times can be readily derived. ferenc, on Communications, Denver, CO, June 1981.

Several interesting extensions of the present re-

"" search could be pursued, the most urgent of which miaht (91 Middleton, David, *An Introduction to Statistical
be the comparison of both unsaturated and partially as- Communication Theory," McGraw Hill, 1960.

"* turated models with those acoustic data recores in our

* disposal for which the POP of p approaches the (100 Perakis, A.d., 'Contributions to Resonrce

Rician or the partially saturated density respectively. Allocation in Tar,;et Tracking Using New Ocean
S.-"Acoustic Detection Models,' Ph.D. Thesis, O.E.,

A relevant problem in this o,11parison is to M.I.?. 1982.
. devise a method for estimating the parameters of these

- distributions from the data (in the phase-random case, (111 Psaraftis, N.H. and A.M. Perakis, *A Basic

v and 012 were estimated by fitting a nor,..il Problem of Resource Allocation in Target Track-
distribution to the histogram of A , where A - 10 ing," J. Acous. Soc. Am. 72(3), pp. 424-833, Sep-
logSop

2 
and A - dA/dt). Once and if the ability of tember 1982.

our models to predict the timinq of 4atection events
"ii demonstrated, we can very conveniently emply them (121 ronzalez, R.I. and R.N. Psaraftis, *Detection

-t in all sequential optimization algorithms appearing in Models for Partially Saturated Ocean Acoustic
12,10,11; for a more rational allocation of acoustic Propagation,* working paper OE-ONR-83-1, NIT,
sensor resources in target tracking, and also in the Feb. 1983.
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ABSTR'.CT .

We discu3s the convergence properties of asynchro- r each time instance, on the adjustments of his deci-
nous cistrizutcd iterative optimization algorithms, siors. So, in some sense, the synchronous model re-
tolerating communication delays. We focus on a gra- quires "a lot of communications."
dient-type algorithm for minimizing an additive cost (2) A second drawback of synchronous algorithms is 'hat
friaction and present sufficient conditions for conver- communication delays can introduce bottlenecks and slow
gence. We view such an algorithm as a model of adjust- down the algorithm. In particular, the time between -

ment of the decisions of decision makers in an organiza- two consecutive updates has to be at least as large ., I
tien and we suggest that our results can be interpreted as the maximum communication delay between any pair of
as guideli'es for designing the information flows in decision makers.
an organization. (3) Finally, complete synchronization is ct inly an

unrealistic model of human organizations.
1. Introduction For the above reasons, we choose to study asynchro-

nous distributed versions of iterative optimization
This paper concerns the convergence prop!'rties and algorithms, in which decision makers do not need to

communication requirements of asynchronous distributed communicate to every other decision maker at each time
optimization Llgorithms, tolerating communication instance. Such algorithms avoid communication over-
delays. The results being presented may be interpreted loads, they are not excessively slowed down by commu-
as perc.aining to the performance of potential parallel nication delays and there is not even a requirement
computing machines. Alternatively, an approach which that each decision maker updates his decision at each
we pursue in this paper, our results may be viewed as time instance, which makes them even mole realistic.
a description of the adjustment process in a d/stri-
buted organization, possibly involving human decision 2. General Properties ai:d Convergence Conditions
makers. Moreover, it could be maintained that the of Asynchronous Distributed Algorithms
mathematical models discissed here, capture some as-
pects of the ever-present "boundod rationality" of We now discuss the main principle underlying the
human decision makers (Simon, 1980]. class of asynchronous algoritlhus which we consider: as

Our moti-ration is the following: A bouanedly ratio- we mentioned, in Section 1, for a synchronous algorithk,
nal decision maker solving an optimization problem each decision maker needs to be informed of the most
(minimize J(x)), may be viewed as an iterative optimlia- recent value of the decisions of all other decision
tion algorithm, whereby a tentative decision x(n) is makers. Suppose now that decision maker i, at time n,
made at time n, and then the decision is updated, in a needs for his computations the current value x (ni
direction of improvement. For example, we may have of the j-th component of x, but he does not know this

value. We the' postulate that decision maker i will . -
x(n+l) = x(n) -y 3J (x(n)), (1.1) carry out his c,:mputations as in the synchronous algo--

rithm, except that (not krowing x.(n)) he will use the
which corresponds to the well-knos,n gradient algorithm, value of x. in the most recent measage he has received
By extending the above analogy to more complex settings, from decision maker j. Due to asynchronism and commu-
an organization (or, at least, some aspects of it) nication delays, decisi.on maker i will, in general, 4
consisting of cooperative, boundedly rational decision use out-dated values of x. to update his own decisions.
makers may be viewed as a distributed algorithm. For
example, suppose that x is a decision vector and that 1However, updates besed on out-dated information may be

the i-th dccision maker is in cha-rgo of the i-th com- substantially better than not updating _. all. The

ponent xi of x, which he updates according to crucial questions which arise are: flow much out-dated
information may be tolerated? flow frequent should

x x communications be, so that the distributed algorithmx(n+l) = xi(n) - Yl . (x(n)) U (.?)
3I 1 operates in a desirable manner?

If each decision maker was to update his part of the Questions of this nature have been addressed by -

eBertsekas [1982,1983] for the distributed version ofdecision (his own component), at each instance of time the successive approximations algorithm for dynamic
according to (1.2), we would have a synchronous
distributed implementation of the centralized gradient progral.aing and the distributed computation of fixed

points. We have obtained general'convergence resultsalgoritim. Synchronous algorithms have been studied of a related nature for the asynchronous distributed
in a variety of contexts (Arrow and Hurwicz, 1960; versions of deterministic and stochastic iterative
Gallager, 1977] but t*ey also have certain drawbacks: pseudo-gradleat [Poljak and Tsyrkin, 1973] (or "descent-
(1) Decision mal.er i, in order to update x. (n) accord- type") algorithms. Seone representative algorithmsen
ing to (1.2), he needs tc know x(n), at timle n. This coped bygor gen e res redeterminitic
requires that each decision maker infoims all others, covered by our general results ,re deterministic

* Research supported by ONR under Contract ONR/NO0014-77-C-0532 (>.R-041-519). '
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operation. Jut this is precisely the issue addressed

by Theorem 3.1: the bounds Kk1 may be thought as quan- .

xi (n+1) = x.(n) - y X\((1 tifying the degree of coupling between divisions; the

bousj=l p, Qi) describe the frequency of communications

specify completely thc asynchronous distributed algo- and V1 represents the speed of adjustment. Theorem
rithm of interest. 3.1 links all these quantities together and provides -

Let us now assume that the time between consecutive some conditions for smooth operation, whereby com- .
comnnunications and the communication delays are bounded. munication rates are prescribed in terms of the degree
We allow, however, these bounds to be different for of coupling.
each pair of processors and each type of message: We may conclude that the approach of Section 3 r-ay

form the basis of a procedure for designing an organiza-
Assumption: Fcr some constants P , 9 tional structure, or -more precisely- the information

flows within an organization. Of course, Theorem 3.1
n k pdoes not exhaust the subject. In particular, Theoremn-P1 < pk(n)< n, V(i,k)I E, Vn, 3.1 suggests a set of feasible organizational struc-

n-Q ik< q (n)< n, V(k~i)e E, (3.12) tures, with generally different convergence rates.
nnVn, There remains the problem of choosing a "best" such

ii iistructure.Note that we may let Pii=Qi 0. srcue '...
oThe esl ttsthat wee may let PIt is also conceivable that the structure of the
The followine result states that the algorithm con- underlying optimizatyin problem slowly changes withik ik k•

verges if P A and Q are not too large compared to the time, and so do the bounds K, but in a time scale . .
degree of coupling between different subproblems. slower t.an the time scale of the adjustment process."
[Tsitsiklis, 1983J. soe !a h iesaeo h dutetpoes

in such a case, the bounds P , Q should also change.
Theorem 3.1: Suppose that for each i This leads to a natural two-level organizatioccal struc-

ture: At the lower level, we have a set of decision

2 MH X M makers continuously adjusting their decisions and
- > K K_ j I Y (ik+ kj+p k ) . (3.13) exchanging messages. At a higher level, we have a
Yi j=1 k-1 j-l -1 supervisor who monitors changes in Kk and accordingly

ij1  2 M instructs the low-level decision makers to adjust their -
1(n),x(n). x (n)). Then, communication rates. Note that the supe~visor does not

need to know the details of the cost function; he ot.ly
lim (z(n))=0, V (3.14) needs to know the degree of coupling between divisions.
n-1 axi i'J This seems to re.flect the actual structure of existing "

organizations. Low level decision makers are "experts"
We close this section with a few remarks: on tne 1*roblems facing them, while higher level decision

1. The bounds provided by (3.13) are sufficient for makers only know certain structural properties of the
converge.-ce but nut necessary. It is known [neztsekas, overall problem and make certain global decision, e.g.
1983y] that a decentralized algorit~un of a similar type setting the communication rates.
may converge in certain special cases, even if the *'s E.Dv .- "

ik Event-Driven Communicationsare held fixed, while the bounds P , Q are allowed
to be arbitrarily large. So, the gap between the suf- We now discuss a slightly different "mode of opera-
ficient conditio:.s (3.13) and the necessary conditions tion" for the asynchronous algorithm, which has also
may be substantial. Further research should narrow this clear organizational .mplications. It should be clear
gap. that communications are required by the distributed
2. Th.. converge.nce rate of the distributed algorithtn algorithm so that decision makers are informed of 0
should be exrected to deteriorate as the bounds P , changes occuring elsewhere in the system. Moreover,
A A" Ak 1Q increase. A characterization of the convergence the bounds 1i , Q of Section 3 effectively guarantee

rate, however, seems to be a fairly hard problem, that a message is being sent whenever a substantial
change occurs. The sara effect, however, could be ac-

4. Touards Organizationcl Design complished without imposing bounds on the time between
consecutive message transmission-- each decision maker

Suppose that we have a divisionalized organization could just monitor his 'iecisions and inform the others
and that the objective of the n-janization is to mini- whenever a substantial change occurs. It seems that
s.ize a cost J which is the sum of the costs ji faced by the latter approach could result in significant savings
each division. To each division, these corresponds a in the number of messages being exchanged, but further
decision r..aker which is knowledgeable enough about the research is needed on this topic.
structure of the problem he is facing, to the extent
that given• a tentative decision he is able to change his 5. Conclusions
decision in a direction of improvement. Moreover, sup-
pose that the divisionsare interacting in some way; that A large class of deterministic and stoc.4astic iter-
is, thie decision of one decision maker may affect the ative optimization algorithms admit natural distributed - -

costs of another division. Suppose, finally, that de- asynchronous implementations. Such implementations
cisioa makers regularly update their decisions taking (when compared to their synchronous counterparts) may
into account the decisiomnof other decision makers and retain the desired convergence properties, while reduc- .
the effects of their own decisions on other divisions. ing communication requirements and removing bottlenecks
Me~s-ies are being exchanged from time to time carrying caused by communication delays.
thr., vequired information. Clearly, the mathematical Wa have focused on a deterministic gi adient-type
mode] of Section 3 may be viewed as a model of the algorithm for an additive cost function and we have
.lbove situation, shown that the communication requirements depend in a

A natural question raised by the above descriLed natural way on the degree of coupling Letween different
situation concerns the design of the information flows compunents of the cost function. Thia approach addresses
withi.a the organization, so as to guarantee smooth the basic problem of designing the information flows -
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gr-ýdient-type algorithms, as well as stochastic ap- which are under the authority of other decision makers.
proximations algorithms. Due to space conside-'ations, We may visualize the structure of the interactions
we only discuss here the nature of the results. Exact by means of a directed graph G-(V.E)i
statements and the proofs may be found in [Tsitsiklis, T'"o-".

19831 and in fcrthcoeming publi%.ations. Preliminary (l The set V of nodes of G is V-fl,.,}.1
v-rsions of these results appear in [Tsitsiklis, (ii) The set of edges E of the graph is
bertsekas and Ath.ns, 1983). -

To discuss the nature of the convergence conditions, E-((i,i): J depends on x (3.2)

we distinguish two cases: Since we are interested in the fine structure of the

A. Constant Step-Size Algorithms (e.g. gradient optimization problem, we quantify the interactions
algorithm) between smbproblems by assuming that the following

For such algorithms it has been shown that conver- bounds are availakle:

gence to the centralized optimum is obtained, provided 2
between pairs of decision makers, plus the communica- ax ax a x i V_ R x (3.3)

tion dely, is bounded by an appropriate constant. i ..
moreorer, the larger the step-size (i.e. the constant
y in tquation (1.2)), the smaller the above mentioned where (without loss of .naerality)

constant. The latter statement admits the appealing M
interpretation thit the larger the updates by each k 34
decision maker, the more frequent communications are K- i

required. A synchronous distrib'ited gradient-type algorithm for

B. Decreasing Step-Size Algorithms (e.g. stochastic this problem could be:
approximation algorithms) 1. For each (ij)e E, decision maker j evaluates

In this case, the algorithm becomes slower and
slower as the time index increases. This allows the j - (3
process of communications to become progressively i ax
slower, as well. In particular, it has been shown that i

convergence to the centralized optmm is obtained 2. For each (i,j)e E, decision maker j transmits A. (n)
even if the time between consecutive commaunications
between pairs of decision makers, plus communication to decision maker i. --
delays, increase without bound, as the algorithm 3. Each decision maker i updates xL according to
proceeds, provided that the rate of increase is not M"
too fast. x (n+l) x (n) "Yi (n An) (3.6)

3. A Distributed Gradient Algorithm
4. For each (i,J)e E, decision maker i transmits

In this section we consider a rather simple distri- x. (n+l) to decision maker J.
buted algorithm for minimizing an additive cost func- We now coitsider the asynchronous version of the..
tion. Due to the simplicity of the algorithm, we are i ± i
able to derive convergence conditions which are gen- above algorithm. Let x (n)-(xl(n),...,x.(n)) denote a
erally tighter than the general conditions discussed decision vector (element of R ) stored in the memory
in the previous sections. It will be seen shortly, of decision maker i at time n. We also assume that
that these conditions admit appealing organizational each decision maker i stores in his memory another vec-
interpretations. 1 M (

The conceptual motivation behlind our approach is tor n (n)) with his estimates of
based on the following statement: 1

If an optimization problem consists of sub- ax. ' . Unlike the synchronous algorithm, we
problems, each subproblem being assigned to "
a different decision maker, then the frequency do not require that a message be transmitted at each
of communications between a pair of decision time stage and we allow communication delays. so let:
makcrs should reflect the degree by which their pki (n) - the time that a message with a value
subproblems are coupled. of xk was sent from processor k to

The above statement is fairly hard to capture math- processor i, and this was the last -
ematically. This is accomplished, however, to some such message received no later than
extent, by the model and the result,: of this section. t.ime n..

Let J: RMýR be a cost function to be minimized qki(n) = the time that a message with a value of
with a special structure: k

M was sent from processor k to processor
J(x) - J(x I ....X M) J i i(xl .. ) (3.1) ax4  9

i-I i, and this was the last such message
i. M reqeived no later than tire n.where J : R •R. So far, equation (3.1) does not im-

pose any restriction on J; we will be interested, how- For consistency of notation we let
ever, in the case where, for each i, ji depends on xi Pii - 1ii

Sp(n) (n)-n. yi.yn - (3.7)
and only a few more components of x; consequently, the

i With the above definitions, we have:Hessian matrix of each J is sparse.
We view Ji as a cost directly faced by the l-th i() k ki()..

decision maker. This decision maker is free to f-.x xk (n xk(p (n)), ymy(k,i)e E, (3.8)
or update the component xi, but his cost also depends k ajk k ki

on a few inte.action variables (other components of x) i(n) ax. x (M ( ,Y(ik)e E. (3.9)
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in a distributed organization and may form t.ae basis
for a syntematin approach, to organizational easign.
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ABSTRACT the organization. From this perspective. theSorganization acts as an infcrmation smoer 0.O..

Th. problem of designing the allocation of 
, 

st a 
-u

inaormation processing tasks to organization membe-s Now an organization rerSivey signals from its
who interact with the organization's environment is environment has direct consequences on the internil
form-.lated. Two information strategies are considered structure of the organization asd on its performance.
for reducing the load on ee~ch member while The specific structure depends on - the nature and
accomplishing the overall task: (a)'creation of self characteristics of the signals that can be received.
contained tasks. az.dWrcreation of slack resources, on the task to be performed. snd on the capabilities
The former leads to parallel processing, while the and limitations of the Individual members comprising .. S
latter is accomplished through alternate processing the organization. By considering only the boundary
rules. The two basic rtrategles can be integrated to between the organization and the environment. a major
produce a wide van .ty of information structures. ('•% isiplification occurs; the boundary eself can be

thought of as a single echelon of organization
ITST3DUCTION members. While these members may occupy different

rositions in the interns:* organizational structure. .-. .
In military organizations the ability to process the relevant characteristic ii that they receive 6" " 4

information in an efficient (i.e., quick and accurate) direct inputs from sources outside the organivantion. O •-
"manner can be of critical importance. Time (Figure 1). In that sense, no member is subordinate
constraints and limitations on the availability and to another; i.e.. the members constitute a single
capabilities of equipment and personnel may reduce the echelon. However, Individuals, or groups of
rate at whi4h the organization's deoinion makers (I)Ms) individuals, can have very different capabilities and
can respond to information they receive. These limitations that reflect, indirectly, their position
constraints and limitations may force the DIa to and function in the organization. For example, they
become overloaded (i.e.. each DU is assigned more may be able to process only certain classes of signals
tasks than he is able to execute in the prescribed (speoio:ization) or deal with limited levels of
time interval, while still maintaining a given uncertainty. Sines it is importiat to remember that
performance level). Information reduction strategies the single echelon may include commanders as well .a
may bp employed to avoid overload. These strateSics operators of monitoring systems.lsecetlvexs as well as
are implicit in the definition of information clerks, the term decisionmakev has been used to
structures. A methodology is presented in this paper describe ell members. i
for designing the information structures for DNa' who
comprise the boundary between an organisaticn and its
environment. The objective of these designs is to
process all information received by the organization
efficiently, using the minimum number of organization
members.

The design of organizations can be decomposed
into two interrelated problems: the organizational
form problem in which the information and decision
structures are ipecified. and the organizational-O
control problem in which the operating rules or
procedures and the monitoring and enforceseAt
strategies are determined. The manner in which
information is received and processed by organization ENVIRONMENT
members is a key descriptor of the structure of an
organization. Indeed. commanication - the exchange of
information and the transmission of meaning - is the Figure 1 Environment and Single Ec!ielon.
very essence of an organization. To move from an (Decisionnakers with hatched areas .
unorganized state to an organized state requires the comprise the single echelon.)
introduction of constraints and restrictions to reduce
diffuse and -andom comaunicastions to cbsnnels
appropriate for the accomplishment of organizational THE NOD.•
objectives (tasks) [11.

The single echelon receives date from one or more
The organization, perceived as an open system sources external to the organizatlon. Every 6n units

[2], interacts with its environments it receives of time on the average, each source n generates
signals or messages in various forms that contain symbols, signals. or m.ssages c.i from its associated
Information relevant to the organization's tasks. alphabet In, with probability poi, i.e.,
These messages must be identifLed, sa-lyzed and
transmitted to their appropriate destinations within
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will be defined whish suggest that certain structtres
p . (. I %. Is ... , will, is fact, be . oet effectiv than others forperforming a specific complex task. For the types of

(1) organizatioas considered, the performance of a complex
task is equivaleat to the processing of information.
where information is defined to be the data received
by the Die in the eehalon. Galbraith has argued that

a variations in the amounts of information (data) that
P I - I a m - 1.2,...#N (2) are sot processed are primarily responsible for the

vIriations in orgaaizational forms (3]. Suco h -
il variations are largely a resalt of the uncertainty

associated with a given task. Uacertainty has bees

where y is the dimension of ._• Therefore. 1/n i defined to be *the differeace between the amount ef
a n data required to perform the task and the amount of ' /th esfroquonoy of symbol sonotstioa from sourceao .;.-'...-.,

data already possessed by the organization" .- "

The task to be performed is defined as the
processing of the input symbols by the Iinglo It will be assumed that the number of DNW

echelon to proauna output symbols. It is assumed that necessary in the echelon Is greater than one. The

a speoific couplex task that must be performed can be underlying premise is that no DY alone is able to

mndoled by N' such souraes of date. lather than process the required "aout of data while

considering these sources separately, one supersource simultaneously achieving the roqsired poiformsance
c', composed of these N' sources, is created. The level.

input symbol z' may be represented by as N"- -.
dimemAooal vector with each of the sources Several factors affect the time roquirod for a DU

represented by a component of this voetor, i.e., to process infornation. The unacetainty of the input
symbol generated sad the number of possible input-
output responses are .wo of these factors. Keying in

a s2 .2 . (3) on these two factors, a processing time fouction which
has an information interpretation ean to introcacod
[4]. Let:

To determine the probability that symbol x1 is
generated, the iadopeadaceo between components must be a be the number of components the u-th Di
considered. If all, components are mutually processes
lndepoedoet, then p is the product of the
probabilities that coal component of a' takes on its tm(s) be a parameter which is a function of the
respective value from its associated atphbabt: number of components assiga*j to the a-th IN

N' cm be a contaunt

P -fIP•( p(ikj) be the probability associated with the J-th

element of the k-tb partition vector's
alphabet.

When all components of the input vector are mutually
Lndepeadaot, this is referred to as biang of finest nos:

grain. In many situations. this assumption, is
unrealistic. It is more comons to have some a t

m
..-.e- .5-

components probabilistiaklly dependent. rkJ a(s) " a logp(j) (- .

If two or more couponents are probabiliatically
dependent on each other, but ss a Sroup are astusLly If this processing time function is averaged over all
independent from all other components of the input possible elements of the input symbol to be processed
vector, then these dependent components can be treated [41, then

as one supercomponent. with a new alphabet. Then a
se isput vector, a. is defined, composed of the 1 m - m "
mutually independent components . and these k i - .
suporeomponeats. This saw a is on finest grain. j

This model of the sources implies synthronization n m lo (.
between the beneratios of the individual source "(t) - a P(!kj) lo P(kj (6)
elements so that they may, in fact, be treated as one
input symbol. Specifically, it is assumed that the
mesa iaterarrivel time for each component Bn is equal if on r, e s r fq o (
to 6. It is also assumed that the Seneration of a Information theory. the last term of equation (6).
particular input vectort 1j, is independent of t0.e is defined to be the entropy I associated with the -, q
symbols generAted prior to or after it. group of components, k. It follows that:

The Dis in the single echelon and the particular "
sequencing and allocation of information received by k a() + es (7)
the Dis define the organizational form. The design of
structures in which no Di is subordinate to any other
.M will depend upon the constraints imposed by the The quantity Ls Is a sonotonic nsondecressis.
organization. Two basiL promises of the design method function of the -umber of components, a, assigned to
are that (a) is general, there is no best way to the n-th DM. It describes the ified cost in toers of
organize and (b) any way of organizing is not equally time required to process any compotent resardless of
effective with respect to performing a specific task the amount of information contained in it. A
[31. Characteristics of single echelon organizations multiplicative function of the number of components
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assigned to the r-th UN is often assumed. i.e., as the uncertainty of the tasks inureases, the
'flstter' (i.e.. mote distributed) an organization

should be~ns with respect to its We [21.tO(l) i l (), """-.

Galbraith 131 has suggested two infornation
reductkon strategies for organizations to address this

where to is a constant. issroe: (1) Creation of Self-Contained Tasks, and (2)
Creation of Slack Resources. In the first strategy.

The parameter e in (7) is assumed to be a constant the original task is divided into a s~t of subtasks.
for seach DU considered. To compute th3 average This reduces (sa the diversity of outputs each IU in
processx8g tine for Um to process the group of the organization can produce and (b) the number of
components. k. the entropy 9 must first be computed., different inputs, since the UN seed only receive the
Many distinct groupings of th omponeats Of A can be inputs pertaining to the given subtask. The stack
oonst8rcted and an entropy must be computed for each resource to be considered for the second strategy will
of those groupings. For each anporcouponent. z(n), be time and will involve a redaction in the required .,_.
the corresponding entropy is: level of performance with respect to time. For

ezample. if it was originally required to have the
task completed in time 6. this time may be eozended to

3 some multiple of 6.
I a pWU(s) - zx(a)) log (p(z(n) = I.())

a 1-1 (9) Two types of proooesingSmodes will be considered.

parallel processing. which is associated with the

Since it has beom assumed that all components in the first strategy, and alternate processing, which is

input vector are mutually Independent, tje entropy of associated with the second strategy. These two modes

any set of romponents Lk is equal to the sum of the ate the fundamental strategies employed to guarantee

entropies of saek of the components in the set. i.e.. all data are processed aithout overloading any CM in
the echelon. The tvo fundamental modes Can be
integrated in variov*e ways so as to develop more

(10) complex organizational forms.

asLk rAIALLIL PV.CISSIN,

In a parallel processing structure, partitions of •

This results in substantial savings in computation. the input symbol are selected and assigned to the DN"

tather than needing to compute the probabilities of in the organization. The rtoup of U t who. tosnle,
each element of each alphabet for each distinct process the entire input wettr form the single
grouping of Components in order to compute the echelon. Raab UN Is Constrained to process a
aseociated entropy, it is only cecessary to compute partýtion of componeats from these that do not

the entropy for each component of the input vector. overload him (i.e., from those that result in a n
processing time of 6 or less). S

Mathematical programing in am appropriate

Whem a 1iA Is overloaded, he can reast is one of modeling approach for this class of problems. This

several ways. IB may decide to reduce the mount of approach seeks *the optimum allocation of limitid

data he has to process by either randomly (rejection) resources among competing activites under a set of

or selectively (filtering) omittiag data. The amount constraints imposed by the nature of the problem being

of data he may be required to process may be reduced studied' (5). In this context, the Components of the

also by having it preprocessed. He 2ay decide to input vector correspond to the limited resources, the

reduce he number of categories of discrimination DUs orrespond to the competing activities and the

(i.e., approximate the inputs) or he may reduce the coustraint sets Include processing time caabilities

required level of accuracy for processing tht data and speoializstilu limitations of *sch P1.

and, in so doing, reduce the number of different I v l p n r t a s e
outputs. If those alternatives sees unsatisfactory, Individual components are solouteC and assigned

he may decide to receive all zhe data allowing queues to each DX is the model. The group of components

to build up. delaying the processing during periods of assigned to the n-th DN defines the partition vector.

peak loads and attempting to catch n'" during time The coaditLons for seloeting and assigning oomponents

intervals whom input symbols are assigned to other are:_
Ds. Otherwise, the IU may simply choose not to a
perform the task 131 (a) every o.upouont is prossed. and

As alternative to having the data preprocessed is
the employment of multiple parallel channels i2], [1]. (b) no DV is overloaded... .. ,

This paper will focus on the nos of parallel channels "et"Y be
(Ms) vwich Snarantee all the data received are Lot Two be & binary variable which eqnals one If the
processed immediately. Queuing also guarantees all n-th component is assigned to the m-th U,. zaer
the information is processed, but not imediately, otherwise. To guarautee that every cocponeu4 is
The other approaches to reducing overload are processed once and only once, the following set of
unappealing to the organization designer as a first constraints is established:

choice in two ways: (1) data are omitted and (2)
wasteful expenditures are iscurreA since the value of N
the data sent but so used is lost.

Yam T m 1  
ain1.2.....N (11)

The Concept of parallel We is analojous to the U-l -

idea of distributed Information processing with each
DU performing a sb.htask. Thus the idea of considering
a single echelon structure only is a zolovant issue where .. ,
for any organization. Many studies hove revealed that
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A deterministic strategy is one In which the
T . (12) ordering of the assignment of the Input vectors to the

DNs is fixed. In order to specify the optimal
A aevor strctue whch inksevey ~information structurez associated with this strategy.
A newor strctue wich ink evry cmpoent it is necessary to determine simultaneously;

to every ON is slown in Figure 2.
(a) the minimum number of DM. N. necessary to

process the input vectors without any one 0
1r, Xbeing overloaded, and

() the frequency, q1 with which each of these

S X I2X YD~s receives an Input vector.

Figure 2 Parallel Processing Structure. rt)

A ON will sot be overloaded if the average time
be requires to process the components assigned to him
does no,. oxzoed 6. The mean processing time is given
by (eqs. (7) and Mg))M

Ta $to +m a3 (13)

where a is the numbet of components assigned to the Figure 3 Alternate Processing Structure. b 4
DN. Since the components have been assumed to be 0 '

mutually isdepend*=t. the entropy 5 is equal to the

su of the entropies of the a components. Since the A very simple method for solving this problem
comonets assigned to the mr-th DI are not known a exists. The overload constraint requires:

priori. a binary Indicator variable Y~ is introduced
which includes the time for processirS component z

only if it is assigned to the DN: n(6

t14 g) if y where to Is the average time for the m-th ON to
(tm+cm aly -a em (14) process an input vector. without any loss of

n amn generality, the D~a may be re-indexed according to
50 if nm -Otheir processing time functions (i.e., lot the first .

ON be the moat efficient and the .r-th DI be the least
Furhemoe:efficient, so that g T2 Il .. IY). The other
Furtermre:constraint on '!a* problem Is that all of the data be

processed:

?=~tmcmN yuI Y 6 1,2,....,N (15) .

n-i ~q~m-1(17)

i.e.. To must be less than or equal to 6 to guarantee
the ur-th DI is not overloaded, where N' has yet to be determined. The solution0

proceeds by choosing Die in order of efficiency until:
The objective function for this problem is to

miinimie the number of D~a requIred to process all the
components without Overload. The informat ion
structure can be constructed from ýhs optimal solution*Sa? 1Ž5 t?()
to this problem. The optimal solution would identify &T /o(b
who and how many D~s are included in the echelonn and U-1
what sub tasks they are performing. 7-

M~ERATR ROESINGIf the right hand side of equation (18) is Sn
equality, then the minimum number of D~s, N
necessary to process the input vectors without

Information structures based on alternate ovrla ise4lt ~ n
processing are appropriate when the input vector
cannot be partitioned (i.e.. when the strategy of '" -

creating self-contained tasks cannot be used tn avoid a? if 1 mI
overload). This strategy involves the criation of a - 1).t..,slack resource, in this case, tine. Thus, each ON is
given more times to process the input assigned to him, 0 otherwise
which introduces a delay strictly greater than a. If the right hand side of equation (18) is a
Figure 3 illusctrates alternate processing, strict inequality, tlben the minimum nimber of D~a. N,
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equal to X1÷. Because units. zo is assigned at time t-(k 0'÷ f)6, where
k-O.1... determines the number of cycles that have

been completed at tins t. The optimal solution
k idontiffa the number and properties of the many D~a
who are included in the single echelon and the

frequency with which each DU receives an input symbol.,

DESIGN NETSODOIWT
must be defined as .. -

The modeling and analysis of the information
i sructuros of siai le echelon g ro t niastionr lead toh a

&/cTo-ne c ifeo on l.ea tofive stop design methodology. The first step Is the

(20) analysis of the properties of the inputs to the .. .
organization, i.e., of the task to be performed, and .', *_•otherwise the mathematical modeling of the source s that the

components of the symbol vector are mutually
independent. The second step conststs of the
selection of the appropriate information reduction
strategies in view of the D~s that are available to

Pm m -1. 2. 1.41~ the designer. The basic ones considered are parallel
and alternate processing. Integrated strategies that

A! consist of various combinations of alternate and
parallel processing are also considered. It is here

141 that the organization designer's understanding of the
task to be performed by the organization is crucial.

P-( • 6/v,) 1 (21) The third stop consists of the formulation of the
mathematical model that represents the (integrated)

U11 information roduotiov strategy selected in the second
step. All constraints that characterize the task, the

lese an may be set to ensure that all of the are organization, and the individual Dis are also
ational. so that a cyclical strategy can be used. expressed auslytically. The fourth stop is the posing

of the optimistic" problem. Given the mathematical

A cyclical strategy is defined as a strategy in formulation of the single echelon model. an objective
hich the ordering of the asaignment of the input function must be defined. Vhile in specific cases.
Ictors to the DWn ]a repeated every a' input vectors, solutions to the optimization problem can be obtained
a the case that the right hand site of (16) is an from straightforward computations, the general

-quality and at least one qm is irrational, a cyclical formulation lends itself to mathematical prograuming
trategy cannot be nseds but it may be argued that techniques, Iu particular, generalized network (GN)
inc. the V- are usually *a. sated rather than formulations proved moat attractive becas, of the
reoisely calculated, a cyclical strategy can always efficient algorithan which exist to solve them (7].
e used. In this case. a'. the namber of inputs in Knapsack problems and mized intvgOr linear programs
so cycle, is the lowest common den,•inator of the can also be considered. The fifth step consists of

U's. The information structures for a deterministic expressing the solution to the optimization problem in
yclical strategy say now be completely specified. the form o! an information structure. The structure

is then evaluated to determine whether the trade-offs '¶-"-.

Define F to be the ordered set of indices on one between the number of DMs used and the delays are , .
yele of a' input vectors: that is, accoeptableo if not. then the designer should return to

step 2 and revise the proposed information reduction

F (f If - 1.2 .....i') (22) staey

In the next section, en Oxample is presented that
low let Fm be a subset of F where illustrates the application of the iive step

methodology.

'm [fa (f I F input z is assigned to DO•N EXANPL"E

e ... ... • ".-...
m - 1,2,.. .,N (23) Consider G distinct sources, each source

genseaticg a vector of signals. The task is such that .
each source output has to be processed intact (i.e..

d f it cannot be partitioned). 7here are M DMs who canreceive the generated signals and none of these D-- *..+

1 if f a0 mal.2,.-A c+u process the output of any of the G sources without
' (24) being overloaded. A parallellalternate information

0 f O otherwise structure seems appropriate. A ooner.e form of this
structure is shown in Figure 4.

the only reqtireseut on the assignment of input to the Step 1: TASK MODELING
m-th IN is that: %

The supercomponent consists of G synchronized
sources that generate vector signals. The mean signal .%,..

m generation rate is 6-. The elements of the Input
.f= q a IS 1,2.••,M. (25) vector can be partitioned into G sets, each set

f1 u 1 corresponding to the output of each of the individual
sources. This is the finest grain decomposition of

the input. "
Slimse input vectors only arrive once every 6 time
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COMPONENT CROUJPS DECISION MAKERS

(27

0M (a~JiC) Any ONs that ate assigned Input for0
processing with zero frequency are excluded

L Ifrom the single echelon. Furthermore, each
Uis h1owed to receive inputs from at most

eone of the 0 sources*. Constraints (28) And
1 29) guarantee those cnditions, whe-e the

*binary variable T is zero when the arth ON
e --- -Is assigned the output of the &g-th source. -

Y ~Y G- 1 Is .2......X (28)

L~~~ q%0 R 
Tg g - -, (29)

Note that while the inputs from the sonurces are

received by the single echelon simultaneously. the
outputs are not synchronized. Indeed, each DU

-~ .~. ~Introduces a different delays the maximust delay is6
given by the maximua valu~e of

Figure 4- Parallel/Alternate Information Structure.

a (l-q )Iq (3O)

stop 2: INPORMATION REDUM~ON STRATEGY

over all a. If this delay is unacceptable, then moreIt is assumed that up to N distinct decisionmakers efficient Wea are needed.0
may be used in the single echelon.

The decomposition nf the input vector allows for . Se : OTMZTO
the parallel processing of the signals generated by
the a sources. No further division into subtsska isIn ti prbe, wre N dsnc s ar
possible Since every one of ti~e 0 subtasks arriving available, the number of decls~onsakers that can

at~~~~~~~~~~~~ a ae8 c n o e p o e se y a y o e ~ p o e the incom ing signals 1; a reasonable objectiv e -6. w
without causing overload. the seconsý Information functlion to be minimized, Since the Wes do aot have
reduction strategy (aviation of slack resources) must dt's pretes prntr).te rolmcnt
be ..e. Alternate processing of signals generated by hedecoupled into 0 distinct optimization problems.
each source will allow additional tine for each ON to eVen though no decisiosmaker is allowed to process
d. the processing and, therefore, overload mny be signals from more than one source. The resT.Iting

avoded Th rsuling proesing mod Lg an mathematical programming (IW) problem must b. solved
integrated parallel/alternate processing. algoritbaiwcally. Furthermore, the nonlinearity of one

of the constraints makes it a difficult one to solve.

Stop 3: MATHEMLICAO!. NOVEL

(a) Since alternate processing is assumed for the tp : INO ATO SRCTR
output of each source, Lhe requirements thatso tieto hen lnarU. m y teall signals be poesd reduces to th h o tin o tennlna W, aey te
condition that the sum of the symbol vauýso a-.ad7 eiesteifomtostructure. The Ssingle elrelon is composed of onlyass ignment frequencies for the output of each those! DJ~s for whi.oh tLe corresponding freqv icy q is
source, qga. must be equal 60 unity, i.e.,.ti~l oiie h nomto structure, Rogers

4, sp cifies the decisionnaker, the group components
X Li he processes, and the frequency Ita with whick he

(2) is assigned these inputs.4

CON4CLUSION

(b) In order that no ON be overloaded, theaprch t te dsin o ifrmin0
freqency wit whih ech D reeiveas st ructures for a single echelon organization has been

signal for processing should be sufficiently presiatod. This arproach is based on the properties
low so that his mean processing tine does no of the inpt ts, the characteristici of the available ,.
exceed the effective mean interarrival time." DPadtecntansjeo nteognzto
This condition becomes: Ds n h osrit roe nteognzto

by the task. Two basic infarmation reduction
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strategies, creation of self-contained tasks and I~n

creation of &lack resources, were modeled es parallel
sad alternate processing. respectively. It was then
show& that complex Information structares can be (I] U,. Katz and R. L. Kahn. The Sozil Pscolg of
*ousttSoted using combinations of parallel and Organizations. John Wiley and NZA.aS, Now YoUrk.
alternate processing. The former is appropriate when 1966.
als overall task can be divided into subtastat the
latter, whom delays in Froducing an output can be 121 S. 1. Lawler.1II and J. 0. Rhode, Information and
tolerated and the task cannot be divided. Control in Organizations, Goodyear Publishing

Company. Inc.. Pacific PalZ~aades. California.
noe nezt major atop is this research is the 1976.

Integration of the single echelon with other parts of
the orgasizatioa. Ilk* single echelon is responsible (1I 3. Galbraith. Designn -isl~ Organizations.
for transmitting the processed inputs to the Addison-Wesley. NeYork 197.-
appropriate destinations within the organization. This
transsission of processed dota to other members in the 141 T. B. Sheridan and W. 1. Ferrell, llan-Mecb~as
organization is referred to as serial processing. Systemsa. The N.l.T. Press, Cambridge. leA. 1974.

The design of multiecholon structures requires 151 R. V. RUost and A. T. Craig, Introduction to
*ach echelon to process its information witLout Mathematics! Statistics. Macmillan. New York.
overload. The constraints on each echelon, however,16.
most be inferred from the constraints that are ipposed
om the overall organization. This introduces a higher 161 1.F. Dresick. "Organization and Control." in
level of complexity to the design problem. Directions in Large Scale Systemp, Y. C. So sand

S. K. 114tter. Ed*., Plan= Press. Now York. 1976.
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INFORMATIONAL ASPECTS OF A CLASS OF SUBJECTIVE GAMES
OF INcO!,'LETE INFORMATION*

/ 0 Dr. Demosthenis Teneketzis Dr. David A. Castanon

0-/ ALPlATECH, Inc.
•/.2 Burlington Executive Center

III Middlesex Turnpike /,. /If 1 S
Burlington, Massachusetts 01803' " .... /,'Is. P"

1. INTRODUCTION game which is the same as his own model. Moreover, \4
A L-aall-consideir-that each player is rational within his

*-)The key assumptions upon which the development of own subjective view of Ohe decision problem. Under
game theory was initially based are the iollowing: these assumptions, w.--a Wei--study onf-stage games -Y

well as repeated games.•arious interesting issues
Al) The rules of the game are common knowledge arise'because of the new sumptions:

to all the players of the game.
QI. How are equilibriu trategles defines for

AL 2 The players have the same perc-otion (model) subjective games? \• / ~of the game. -of the game. Q2., How do these equilibrium strategies relate

"" A3) Play. -s are fully committed to a priori to the equilibrium stategies of the games
strategies. • studied so far?

-g A4) Players are rational. Q3. Do players realize during the play of the
I game that they have different models?

Aesumptions (AI)-(A3) are quite restrictive as
t t,* do not hold in many real-life economic, political, Q4. If, during the play of the game, the"/ military and other social situations. This is why, as olayers realize that they have different

•game theory developed, attempts we-re made to relax some models, how do they modify their models/ 'of these assumptions. Assumption A3 was a consequence and their strategies?

""*/ of the--ii6rmalttatrf:-prinicple of Von-Neimann, [12, pp
/ 79-841 which roughly says that given an extensive game, Q5. Does repetition of the game result in co-

/ Ione can always reduce it to an equivalent game in nor- operation as in the case of the games
!mal form involving only strategies and payoffs and studied so far (e.g., [111)? And does re-

* where all dynamic and informational aspects of the ori- petition of the game alleviate differences
* ginal problem have been expressed in the form of stra- in the models of the players and allow

tegies by considering all the possible actions of all players to agree on an equilibrium strategy?
,. the players under all possible circumstances. Aumann

and Maschler III were the first tp point out via a sim- Q6. How does bargaining take place in subjec-
ple counterexample the inappropriateness of the normal- tive games? What is the effect of the'-•.... .... r ....... zation--principle under certain conditions; since then ......... . be-gaining model used or the outcome of i

"consideraple developments followed by relaxing the as- bargaining?
sumption of prior com•itment (21-161. Harsanyi [71 aaid
Aumann-Maschler et al. (81 pointed out that in some Q7. Is it possible to characterize the set of
military problems, players may lack full informatiot. all equilibria for repeated subjective
about the payoff functions of other- players, or about games?
the physical facilities and strategies of other
players, or even about the amount of intormation that To study and understand some of these questions,
other players have about the various aspects of the we shall zonsider a special class of games, immeey 2x2,
game situation. Thus, Harsanyi 171 first relaxed as- two person non-zero sum games of incomplete information
sumption Al and formulated and developed models of where the payoff matrices have a special st-actere.
games of incomplete information. Considerable progress
has been achieved in the theoty of games of incomplete The rert of the paper is organized as follows: In
information since Harsanyi's original formulation (see Section 2, we present the model for subjective games;

. - 181-[101 and references therein). "o'1 t £f . speci~lcally, we statc the basic assumptions under
_/ I.-."..- / which the theory will be developed. In Section 3, we

;- this paper,,we shall relawrassuT2t~ons Al and briefly disLuss gpmes of incomplete information and
-. A2,. Veall`- sIdtfyr assumption A4, -and we s6-1 formu- point out the differences bewtween Harsanyi's model and
_ a e-,e rlass of gznes which- ---s4•e--.eia."SubJective our model. In Section 4, we consider static sulbjective
" " Games - We shall consider thatfhe players have dif- non-cooperativo, games of incomplete information; we

2> ferent perceptions (models) of the gnme that is being study informational aspects of these games and contrastSii '•,;%!played. I= - further assumeithat each player the results to those of classical games. Conclusions

j considers that the other players have models of the are presented in Section 5. This paper is part of a
I larger report [161 where infinitely repeated non-

cooperative subjective games of incomplete information"*Work sponsored by Office of Naval Research, Depart- are studied and solved. The section on repeated sub-
ment of the Navy, 500 N. Quincy Streit, Arlington, VA Jective games has been omitted due to space limitations
22217 Con.ract No. N000014-82-C-0693.
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The zontributions of this paper are as follows: 3. GAMES or INCOMPLErE INFORMATION

w (i) It presents a aodel for subjective games Games of Incomplete Information (GIl) were first
which relaxes som,! of the restrictive key assumptions firmulated by Harsanyl Ill. In his original formula-
of game theory previously made. tioi, Harsanyi caltea Gil thoie situations where "the

participants lack iull information about some important
(ii) It studies a simple class of static subjective aspects of the game they are ilayinl'. Harsanyi con-

games and their in-ormational aspects; it shows the ef- siders a n-player game and makes the following key -

fect of the subjective models on the solution of the assumptions in his formulation:
game and con, Lasts the value of information in these
games to the value of information in classical static HI. Each player has certain information about
Bayesian games. the game. This information is described by a

"vector
2. THE MODEL FOR SUBJECTIVE GAMES T T T

ci . (0i,bi •
hWe hall develop our theory of subjective games

based on the following key assumptions: The component *i represents the private in-
formation of player i about the payoff func-

Si. Players have different perceptions (dif- tions .Jj,J 2 .--*,J, of the n players (the com-
ferent models) of the game. ponent bi will be defined below).

S2. Each player thinks that the other players' H2. In dealing with incmplete information, each
perception (model) of the game is the same player takes a Bayeaian approach. That is,
as his. each player assigns a subjective probability

distribution Pi,
S3. Players are Bayesian.

Pi = Pi (cl c211-t ci-lo ci+1,°*',cn)
S4. Each player is rational within his own

subjective view of the game. & P (ci) (3-1)'

Assumptions Sl and S3 imply that each player j to all the variables unknown to him and at-
will assign a .ubj.ctive joint probability distribution tempte to maximize the mathematical expects-

* Pj to all variables unknown to him. A subjective prob- tiot, of his own patyoff J, in terms of this
ability distribution Pj entertained by player j is de- probability distrkbtution Pi,

.* fined in terms of his own choice behavior and may be
considered as his personal estimate of the variables H3. The other players do not know the subjective
unknown to him [131. lit contrast to Sl and S3, assump- probability Pi used by player i. But each

. tion A2 combined with Bayesian players implies the player j (JQ*i) can write Pi in the form
exi3tence of an objective probability distribution P*
which is defined in terms of the long-run frequencies Pi (ci) = Ri (clhbi) (3-2)
of the relevant events; these frequencies are estab-
lished by an independent observer, the umpire of the where Ri is a function whose mathematical
game. form is known to all players, and bi is a

vector consisting of those parameters of the
Assumption S2 implies that the rules of the game function Pi that are known only to player i.

are riot common knowledge to all the players' since each Thus, each player has a probability distri-
playes thinks that the other players' perception of toe bution over the subjactive distributions Pi
game is the sawe as his, yet this may not be true. of the other players, and these probability

, Assumptions Si and S2 were previously used in the con- dirtributions are comon knowledge to all the
te..c of distributed estimation and detection (141. players since the mathematical form of each

- Some of the interesting issues that arise because of SI Ri is known to all players..
and S2 are the following:

"Hatsanyi shows that under HI-H3, the GII is Bayes
I1. How do players interpret moves of other equivalent to a Game of Complete Information (GCI) for

players or messages received from other each player, (i.e., completely equivalent to a GCI for
players? each player from a game theoretic standpoint), if there

- •.is a probability distribution (ecl, c2, -, cn) such
12. Do players realize during the play of the that

game that they have different models or do
they play the game and achieve an equili- R* (ciWai,bi) = Ri (Wila±,bi) Vi (3-3)
brium which is acceptable within the terms
of their own models? Furthermore he shows that the uormal form for the

equivailnt Bayesian game is in many cases an unsatis-
13. If players discover that they have different factory representation of the game situation and has to

models, how do they reconcile their be replaced by other representatiuns, s .'., the semi-
differences? normal (or extensive) form, where Bayesian games must

be interpreted as game6 with delaved commitment.
Some of the above issues were studied and aswered
"in [141 in the context of distributed estimation and Thus, Harsanyi's formulation drastically departs
"detection. from the standard formulation of game p-oblems as it

"relaxes two of the basic assumptions, namely A2 and A3.
Thus, comparing SI-S4 with A1-A4, we see that only

the rationality assumption holds. Under assumptions Following Harsanyt's original formulation, OiI
Sl--S4, several interesting issues like Q1-Q7 discussed wuie analyzed by many researchers (see [91 -[101 and
"in Section I arise. We shall study some of these references therein), and the sets of equilibria for
issues in the context of a specific class of games, zero and non-zero sum, sta~ic and repeated GII were
namely games of incomplete information, determined.
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The study of subjective games under assumptions 32. Player 2 thinks that chance selects game I
SI-S4 will be based on subjective GII. Our model dif- with probability
fers from that of Harsanyi in one basic point.
Harsanyi's formulation assumes that the rules of the P(l) a q < 1/2 (4-6)
game are common knowledge to all the players (i.e., as-
sumption A! holds). This happens because each player B3. Each player thinks that the other player's
knows wpat information is available to other players model of the game is the same as his own
ard he also knows the functional form of the subjective model
joint probP4ility distribution entertained by each
other player. Our formulation assumes that the rules 54. Chance actually selects game 1 with
of the games are not common knowledge ta all players, probability P(i) - r
This happens because each player has his own subjective
probability about the game and in addition he thinks We further consider that
that all the other players share the same view about
"the game as he does. In spite of this difference a lot 35. Each player is rational within tie own

S .of res-ilts from GII will be ubeful in analyzing subjec- subjective view of the game.
tive GII and in showing similarities and differences
between these two classes of games. Assumptions BI-B5 are the analogs of SI-S4 for the

specific game. Under these assumptions, we shall study
the solution of the game as well as various infor-

4. STATIC SUBJECTIVE GAMES OF INCOMPLETE INFORMATION mational aspects of it.

. In this section, we consider static non-zero sum
games of incomplete information. We present a class of 4.2 The Solution of the Game
subjective games with simple solutions, we study the
value of public, private and secret information, and we We study the problem formulated above under ttree
coatrast the results with those of the classical static different types of information that a player may re-
Bayesian games, celve:

1. Public Information
4.1 Problem Formulation

In this case, both players are informed about the
We consider the following static twc person outcome of the chance move.

non-zero aum game. Chance selects one of two games
with the following payoff matrices: 2. Private Information

" CGame I In this case, one player (say player 1) is in-
a , formed about the outcome of the chance move where-

as the other (player 2) is not. Moreover, the
I" (ll, cll) (c21, c12) uninformed player knows that his opponent Is in-

(4-I) Zormed.
P " (c12, c21} (c22, c22)l

i c 3. Secret Information

"In this case, one player is informed about the
G ame 2 outcome of the chance move whereas the otheL is

a T uninformed. Moreover, the uninformed player is
unaware that his opponent is informed.

C12 c12) (c22. cll)( /2 (4-2) For each of these games, we present the solution
1i "cll, c22) (c2i, c2i) of the game. Moreover, in order to compute the value

"of information for each case, we need to find the solu-
tion of the game where no player is informed. Thus, we

We further assume that solve the game for this case too. For each case, each
player perceives a game which Js different frou the
game perceived by the other player. Therefore, in some

cll > c21 > c12 > c22 (4-3) cases, we shall have to consider two different games in
order to find the solution for each case.

c12 t c~l > cll + C22 (4-4) .1. Public Information

In this case, player I plays X in Came I and u in
Player 1 can choose action (,u) and player 2 can Game 2. Player 2 play3 a in Game I and T in Game 2.
Schoose action o,r. Thus, the outcomes are (€ll, cll) in Came I and (c21,

c21) in Came 2 and the payoff of the players is

Note that because of 4-3 each player has a dominant

strateg, in each one of the two games. So far, the A = roll + (1-r) C2 (4-7)
statement of the problem and the assumptions (4-3) -

" (4-4) are essentially the same as in [iS]. However, 2. Private Information
"contrary to 1151, we now assume that the two players

". have a different perception of the game, namely: 2a. Assume at first that player 1 is Informed. Then
he plays o in Came I and U in Came 2. Player 2 has two

Bi. Player I thinks that chance selects game I options. Choose either a or T. If he chooses a, he
with probability expects a payoff equal to

P(I) p > 1/2 (4-5) q cii + (l-q) c22 . (4-8)
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If he chooses T then he expects a payoff equal to 3b. If player 2 is secretly informed then, because in S
each game he has a dominant strategy, he plays a in

q c12 + (0-q) c21 (4-9) Game I and T in Game 2. Player I acts conaidering that
the following game is being played:

Because of (4-4) and (4-6), player 2 prefers to play T. -
Thus, the payoffs of the two players are I --p

pcc 141�-) (Pc2l.(1-p)c22) .(pcl2('-p)cll)jP - rz 4z) LI ""'-

JP rcl2 + (1-r) c2! * (4-11)

2b. If player 2 is informed, then he plays a in Game I (PC12+(1-P)cll),(Pc2-+(I-P)c22)
and T in Game 2. An argument similar to that of Case
2a shows that if

cli - C22 I_.
p l (4-12) (4-20)cli + c21 " cl2 " c22 " 7"

Because of (4-3),(4-5), 1 is a dominant strategy.
then player 1 will play p. Otherwise, he will play A. Thus, player I playe A. The payoffs of the two players
The expected payoffs for player I are then: are:

(( rcil + (1-r) C22 (4-21) , S
-J? rcl2 + (1-r0 c21 (4-13)"'"

and
7- CIL (4-22)

Srcil + (1-r) c22 (4-14) 2...

Finally, in crder to compute the value of infor-
respectively. mation for each case, we need to solve the game for the S

case where none of the players is informed about the
The payoff for player 2 is: outcome of the chance move. In this case, player I

thinks that the game whose payoff matrix is given by
(4-20) is being played, whereas player 2 thinks that

J- c 2 1 (corresponding to u) (4-15) the game whose payoff matrix Is given by (4-17) isbeing played. Therefore, player I plays I and player 2
and plays T. The payoffs of the two players are:

JP cll (corresponding to X) . (4-16)
2 J1 rc2l + (1-r) c22' (4-23)

3. Secret Information and

3a. Assume at first that player 1 is secretly JOY rcl2 + (1-r) ell (4-24)
informed about the outcome of the chance move. Then, 2

because in each game he has a dominant strategy, he
plays A In Game 1 and u in Game 2. Player 2 thinks Let us discuss now some interesting features of
that the following game Is being played: the solutions. of these gamen. At first note that each

payoff bimatrix is symmetric, hence in each one. of the

I two games, the plsyers are interchangeable.. Thus, one
(qcll+(1-q)ci2),(qcll+(1-q)Cl2) expects that for the classical Bayesian game, in the

case of public or secret information, the beitavior of
the informed and the uninformed player will be indepen- .- ""

(qc2i+(1-q)c22),(qc12+(1-q)cli• dent of who is the informed and who is thi. uninformed S
player. For exaaple, in the case of private or secret
information if player 1 were the uninformed player and .-
played A (first row), we would expect that if the "

(qc12+(l-q)Cjl) ,(qc21+(i-q)c22) situation were reverted and player 2 became the unin-
formed player he would play o (first column). Also, in
the case where no player was Informed about the outcome

(qc22+(1-q)c21),(qc22+(i-q)c21) of the chance move, the dominant strategies would be
-- (La) or (P.r), hence the. outcome of the game would be 6

(4-17) either (,o) or (U,T). Consequently, the value of
private, secret or public information would be the same

B-cause of (4-3), (0-6) each player has a dominant for both players. It can be easily checked that this
strategy in this game. Thus, player 2 plays T. The is indeed the case when" p.q.r. However, this behavior
payoffs of the two players are: Is not observed when each player has his own subjective %

msdel of the game. When player I is privately informed

about the chance move, player 2 alwaya chooses t
J1- C2 1  (4-18) (second column); on the other hand, if player Z is S

privately informed about the outcome of the chance
move, player I does not always play v (second row).

2  rci12 + (i-r) c21 - (4-19) When player I is the secretly informed player, player 2
always plays r (second column); If player 2 is the
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. secretly informed player, player I al-.;,vf plays A Thus, for the class of games considered in this
(first row). When no player is informe.I about the out- section, the value of p,.blic, private and secret infor-
"come of the chante move, the outcome of the game is mation differs from player to player, whereas in the
"(A,T). These facts indicate that the value of private classical Bayveian framework the value of public, prLv-
"and secret information is now different for each ate and secret information does not depend on who I';
player. (Obviously, the asymmetry is induced by our the informed and who is the uninformed player.
"assumption 0 q < 1/2 < p 4 1.) Indeed, this is true

Sas we shall see J.i the next section where we study the Consider the case where player 2 is privately
value of the information for the above game. informed,

cil - 2"4.3 The Value of Information P < ell - c 22
.x:.cll + c21 - c12 - 22

The value of information is defined in general as
__ follows: and

Vi - (Payoff of player i when he knows the out- r - - . (4-32)
come of the chance move) - (Payoff of player i when 2
no player is informed about the oucome of the chance
move.) Then, the value of information Oor player 2 is,

* - according to (4-28),
We shall compute the value of public, private and

secret information for each player. 1 1

VP c~l - c12 - elli (4-33)
1. Value of public information. 2 2 2

Because of (4-7), 4-23) and (4-24) we find that If

c21 < c12 + -l

V• - r(c! -"c21) + (1-r) (c21 - c22) (4-25) 2 2

Sthe value of private informatimn for player 2 is
=(2-l) + (l-r) c21 - t . (4-26) negative. On the other hand, in this situation, the

gain for player I is, according to (4-13) and (4-23)

2. Value of Private Iniormation - " (cI-c22) > 0 • (4-34)

S -Because of (4-10), (4-14) - (4-16), (4-23) and
- (4-24) we find that: Thus, for the class of symmetric games considered in

- this paper, we have a case where the value of private
information is negative for the infornet; player and the

.V (1-r) (c21 - c22) (4-27) uninformed player benefits from the situation! This
phenomenon never occurs for this class of games in the
classical Bayesian framework, where if the value of
private information is negative for the 'nformed player

V, c 2 1 - rcl2 (1-r) ell the uninformed player cannot benefit either [15].

Even more surprising in this case is the fact that
ell - c22 the informed player wants to use his private informa-

"" if P < (4-28) tion, whereas the uninformed player wishes that the
'll + c21 - c12 - c22 informed player acted as if he were uot informed!!

The reason for all these counterintuitive res lts
and the differences between the subjective game and the

V P r(cll - c12) cl-ssical Bayesian game is that each player evaluates
- the game as well as the behavior of his opponent in the

game in terms of his own model and acts accordingly.
i'" ./ icf - c22 Such subjective evaluations lead to behavior which

if P > (4-29) would never occur in the classical Bayasian formulation
-ll + c21 - c22 - c12 as evidenced by the previous analysis.

One issue that naturally arises in these games is
the following: How do the players involved in the game

3. Value of Secret Information interpret its outcome? Do they realize that they have
"different models? If neither player is informed about

Because of (4-18), 4-22). (4-23) and (4-24), we the outcome of the chance move, then player 1 plays the
.r. get: game described by (4-20) and player 2 plays the game

described by (4-17). In this situation, pvayer I ex-
pects that player 2 will use strategy o and player 2

V- (1-r) (c21 - c22) (4-30) expects that player I will use strategy P. At the end
of the game, each player finds out that the outcome is
the opposite of what he expected. Since each player
assumes that his opponent is rational, at the end of

"V r(cll - c12) . (4-31) the game both players conclude that they have different
models. Similar phenomena occur if one of the players
is either secretly or privately informed.
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In the case of secret information, the secretly 4. Wilson, R., "Perfect Equilibria and Sequential 0
informed player discovers at the end of the game that Rationality." presented at Luainy Conference on
his opponent's perception of the game is different from Games with Incomplete Information, Sept. 1981.
his. On the other hand, the uninformed player may 1)
never discover that his opponent has a different per- 5. Selten, R., "Reexamination of the Perfectness
ception of the game or, 2) not be able to interpret his Concept for Equilibrium Points in Extensive
opponentts move in terms of his own model in which case Games." International Journal of Game Theory.
he can conclude that i) either his opponent hau a Vol. 4, No. 1, pp. 25-55.
different model of the game or (most likely), (ii) his
opponent has secret information. 6. Selten, R., "Spieltheoretische Behandlung eires *.. .

Oligopolmodels mit Nachfragetragheit."
In the case of private information, the uninformed Zeitschrift fur die gesamte Stantswvissenschait,

player is not in a position to discuver at the end of Vol. 12, 301-324. .-.
the ga.e that his opponent has a different view of the
ga.e. The informed player may or may not (depending on 7. Harsanyi, J.C., "Games of Incomplete
whether (4-12) holds) discover at the end of the game Information Played by Bayesian Playets," Parts
that he and his opponent have inconsistent beliefs 1-IlI, Ianagement Science, Vol. 14, No. 3, No. 5,
about the game. No. 7, 1967-1968.

Note that if both p,q > 1/2 or p,q < 1/2, the 8. Aumann, R.J., M. Maschler et al. "Came Theoretic
players never .discover the differences in their Aspecto of Gradual Disarmament." In: Mathematics
models. 1966-1968

9. Sorin, S. "An Introduction to Two-Person Zero-Sum n
4.4 Summary Repeated Games of Incomplete Information," .

Technical Report No. 312, Institute for
It. th~is section, we presented and analyzed a sim- Mathkmatical Studies in the Social Sciences,

pie class of two person non-cooperative, non-zero sum Stan'ord University, May 1980.
one-ptag- subjective games of incomplete information.
We showed how the inconsistent beliefs of the players 10. Hart, S., "Non-Zero Sum Two-Person Repeated
lead to results which are counterintuitive and differ- Games with Incomplete Information%, Technical
ent from the re.ults of the classical Bajesian game, Report No. 367, Institute for Mathematical
and how private or secret information is differently Studies in the Social Sciences, Stanford -
evaluated by each player. University, February 1982.

One important issue that has not been discussed so 11. Aumann, R.J., "Acceptable Points in General
far is the following: Are the differences between the Cooperative n-Person Games," Contributions to
two players amplified or smoothed out if the game is the Theory of Games. Vol. IV, Annals of Mathe-
repeated over and over? This issue will not be die- matical Studies, No. 40, Princeton: Princeton
cussed here due to space limitation, The analysis of University Press, pp. 287-324
the repeated subjective game of incomplete information
appears in (161. 12. VonNeumann, J. and Morgenstern. 0., Theory of

Games and Economic Behavior, J. Wiley, 1944.

5. SUMMARY - CONCLUSIONS 13. Savage, L., The Foundations of Statistics,
Dover 1972. :'--

In this paper, we presented a formulation of Doer192
subjective games. This formulation relaxes two of the 14. Teneketzis, D. and P. Varaiya, "Asympotic
%ey assumptions upon which game theory was originally Agreement in Distributed Estimation with
developed. 1) the assumption that all players have the Inconsiscent Beliefs", ALPI1ATECH Technical
same model of the game and 2) the ass,-mption that all Report TR-172, September 1983. N
the rules of the game are common knowledge to the

players. To illustrate the differences between our 15. Levine, P., and J.P. Ponseard, "The Values of , "
formulation and previous formulations of games, we Information in Some Non-zero Sum Games."
restricted attention to a simple specific class of Interntional Journal of Game Theory. Vol.6, No. 4,
games of incomplete information. We showed that even pp. 221-229. "
for this simple class of games, the inconsistent
beliefs of the paieers lead to results which are 16. Teneketais, D., and . A. Castanon, "Informational
counterintuitive and different from the results of the Aspects of a Class o Subjective Games of incom-
corresponding classical Bayesian games. plete Information," ALPHATECH Technical Report ".

TR-189, November 198"3.
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ON THE COMPLEXITY OF DISTRIBThtED DECISICS4 PROBLEMS

"by
John Tsitsiklin and Michael Athens

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

AdSTRkCT

We study the computational complexity of finite ver- set of processors obtain (possibly conflicting) obser-
sions of the simplest and fundamental problems of dis- vations on the state of the environment. Each processor
tributed decision making and we show that, apart from has to make a decision, based on his own observation.
a few exceptions, such problems are hard (NP-complete, How-ver, for each state of the environment, only certain
or worse). Some of the problems studied are the well- decisions accomplish the desired goal. The question
known team decision problem, the distributed hypothesis "are there any communications necessary?" may be then

n testing vroblem, as well as the problem of designing reformulated as "can the goal be accomplished, with
a coamunications protocol that guarantees the attain- certainty, without any communications?" We show that
ment of a prespecified goal with as little comaunica- this problem is, in general, a hard one.
tions as possible. These results indicate the inheret We then impose some more s-.ructure on the problem,
difficulty of distributed decision making, even for by assuming that the observations of different proces-
very simple problems, with trivial centralized counter- sors are related in a particular way. The main issue
parts and suggest that optimality may be an elusive that we address is "how much structure is required so
goal of distributed systems. that the problem is an easy one?" and we try to deter-

mine the boundary between easy and hard problems.
+ I1. Introduction and Motivation In Section 3 we formulate a few problems which are
* related to the basic problem of Section 2 and discuss

In this paper we formulate and study certain simple their complexity.
decentralized problems. Our goal is to formulate pro- In Section 4 we study a particular (more structurad)
blems which reflect the inherent difficulties of decen- decentralized problem - the problem of decentralized
tralizationt that is, any difficulty in this class of hypothesis testing - on which there has been some in-
problems is distinct from the difficulty of correspond- terest recently, and characterize its difficulty.
ing centralized problems. This is accomplished by Suppose that it has been found that communications
formulating decentralized problems whose centralized are necessary. The next question of interest is "what
counterparts are either trivial or vacious. is the least amount nf connunications needed?" This

One of our goals is to determine a boundary between problem (Section 5) is essentially the problom of desiv-
Seasy" and "hard" decentralized problems. our results ning an optimal ccmmunications protc-olt it is again a

will indicate that the set of "easy" problems is hard one and we discuss some related issues.
relatively small. In Section 6 we present our conclusions and discuss

All problems to be studied are imbedded in a dis- the conceptual significance of our results. These con-
"crete framework; the criteria we use for deciding clusions may be summarized by saying that:
whether a problem is difficult or not come from com- a) Even the simplest (exact) problems of decentralized
plexrity theory (Garey and Johnson, 1979; Papadimitriou decision making are hard.
and Steiglitz, 1982]: following the tradition of com- b) Allowing some redundancy in communications, may
plexity theory, proble.s that may be solved by a poly- greatly facilitate the (off-line) problem of desig-
nomial algorithm are considered easy: NP-complete, or ning a decentralized system.

o worse, problems are considered hard. However, an c) Practical communications protocols should not be ex-
NP-completeness result does not close a subject, but is pected to be optimal, as far as minimization of the

+ rather as a result which can guide research: further amount of coemunications is concerned.
research should focus on speci" cases of the problem
or on approximate versions of the original problem. Some of the results of tis paper appear in

The main issue of interest in decentralized systems [Papadir.ibriou and Tsitsiklis, 19831 and (a.most) all
"may be loosely phrased as "who should communicate to proofs may be found in [Tsitsiklis, 1983].
whom, what, how often etc." From a purely logical
point of view, the first question that has to be raised 2. A Problem of Silent Coordination
"is "are there any communication necessary?" Any
further questions deserve to be studied only if we In this section we formulate end study the problem
come to the conclusion that communications are indeed whether a set of processors with different information"may accomplish a given goal -with certainty- without
necessary.

The subject of Section 2 is to characterize the in- any communications.
herent difficulty of the problem of deciding whether Let {1,...,M} he a set of processors. Each processor,
any communications are necessary, for a given situa- say processor i, cbtains an observation y. which comes
tion. We adopt the following approach: a decentral- from a finite set Y of possible observations. Then,
ixed system exists in order to accomplish a certain processor i makes a decision ui which belongs to a
goal which is externally specified and well-known. A finite set U. of posrible decisions, according to a

rule.
* Research supported by ONR under contract ONR/N00014-77-C-0532 (NR-041-519).
* One way of viewing NP-complete problems, is to say that they are effectively eq•uivalent to the Traveling

• .Salesman problem, which is well-known to be algorithmically hard.
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ui - •i(Yi) 0 (2.1• following: . -,- ,

STheorem 2.1,
where ci is some function from Y into U The a) The problem DS with two processors (M-2) and res-
34-trple y 1,... ,y

1 4
) i total informauion avail- tricted to instances for which the cardinality of the

able; so it may be viewed as the "state of the envi- decision sets is 2 (IUiI-2,
ronaent." For each state of the environment, we assure i.-..ayb.sledi
that only certain 3-t'aples (u, ,...,uj 4 of decision ac- polynomial time.
camplish a given, externally sýecifie., goal. More b) The problem DS with two processors (M-2) is NP-
precisely, for each ýyl,...,y,)e Y1x... xy we are given comlete, even if we restrict to instances for which

a set S(y 1 ,.... Y3 ) C Ux...-xUM of satisficing docisions. 1UI 12, IU2 1-3""" m i c) The problem DS with three (or more) processors
(So, S may be viewed as a function froa (;1>3) is NP-complete, even if we restrict to instances

0 x1 .. )x for- which Iu 1-2,Yi
epbm b td ,h wcld rTheorem 2.1 states that the problem DS is, in gen-

The problem t o be studied, which we call "distri- eral, a hard combinatorial problem, except for the
buted satiaficing problem" (after the term introduced special case in which there are only two processors
by H. Simon (19801) may be described formally as and each one has to make a binary decision. It shouldfollows: be noted that the difficulty is not caused by an at-

Distributed Satisficng (DS): Given finite sets Y11 ... , tempt to optimize with respect to a cost function,
because no cost function has been introduced. In game

K"n theoretic language, we are faced with a "game of kind."

U x...x u rLther than a "game of degree."
, are there functions %£ Y *Ui, i-l, We will now consider some special cases (which re-

flect the structure of typical practical problems) and -
2,...,M, such that examine their computational complexity, trying to deter-

mine the dividing line between easy and hard problems.
(31(y1),..., 3 (Y3K))eS(Yl,...,y3 ), N(y11.'',y 34) From now on we restrict, our attention to the case in

Y x...x in (2.2) which there are only two processors. Clearly, if a
problem with two processors is hard, the corresponding -

problem with three or more processors cannot be easier.
Remarks: We have formulated acove the problem DS so that all

pairs (y,,y2 })e Y1 XY2  are likely to occur. So, the
1. We are assuming that the function S 'is 'easily ioa nf fe t ce r sc tl ncomputable;* for example, it may be given in the form information of different processors is completely un-.-..--..
computable, forexmpl tmye ithfr related; their coupling is caused only by the structure
of a table.
2. The centralized counturpart of DS would be to of the satisficing sets S(y 1 ,y 2 )• In most pract.cal
allow the decision uI of each agent depend on the situatinns, however, information is not completely uns-
entire set ... y ) of olservations, so, would tructured: when processor 1 observes y1 , he is often

be a function from Y1 x... x YM into Ui. (T'is cor- able to make certain inferences about the value of the

responds to a situ .tion in which all processors share observation y2 of the other processor and exclude cer-

the same information.). Clearly, then, there exist tain values. We now formalize these ideas:

satisfactory (satisficing) functions k:YIx... XYM 'UV, Definition: An Information Strw.ture I is a subset

if and only if S(Yl,...,y3 )•,)1 V(yl...,*I)eYIx...xym. of Y1xY2 . We say that an information structure I has

Since S Is au. "easily computable" set as a function degree (DI,32 ) (D 1,D2 are positive integers) if
of its arguments, w" can see that the centralized 1 2 1-
counterpart of DS is a trivial problem. So, any dif- (i) For each yleYl there exist at most D1 distinct

ficulty inherent in DS is only causied by the fact that elements of such that (y,y )e .
information in decent-ralized. 2Y

infrmaionis ecetraize.(ii) For each y eY there exist at most D distinct
3. A "solution" for the problem DS cannot be a closed- 2 2 2
form formula which gives an answer 0(no) or 1(yes). elements of Y such that (y.,y 2 1 I..
Rather, it has to be an algorithm, a sequence of ins- 1.i
tructions, which starts with the data of the problem (iii) DlD2 are the smallest integers satisfying Mi), *" ".
(Y, ... ,y , UI,...,U ,S) and eventually provides the (ii). An information structure I is called classical

correct answer. Accordingly, the difficulty cf the if DL-D2-12 nested if D1 1 or D2.1.
problem DS may be characterized by determining the We now interpret this definition: The information
place held by US in the complexity hierarchy. For structure I is the set of pairs (y,,y2 ) of observations ".
definitions related to computational complexity and
the methcds typically used, the reader is referred to that may occur together. If I has degree (D1,D2) 2
(Garey and Johnson, 19791 Papadimitriou and Steiglitz, processor 1 may use his own observation to decide which
1982). elements of Y2 may have been observed by processor 2.
4. If, for sm i, te set U is a singleton, proces- In particular, he may exclude all elements except for

sor i has no choice, regarding his decision and, con- D of them. The situation faced by processor 2 is
sequently, the problem is equivalent to a problem in .4=.trical.
which processor i is absent. Hence, without loss of If D -1 and processor 1 observes y1 , there is only %
generalitn , we only need to study instances of DS in I
which 1j.r 2, V.one possible value for y . So, processor I knows the

observation of processo' 2. (The converse is true
5. We believe that the problem DS captures the es- when D -1). This is called a nested information struc- * /
sence of coordinated decision making with decentral- ture because the information of one prcessor contains2
ized information and witthut communications (silent the information of the other.
coordination). When D -D =1, each processor knows the observation

12Som initial results on DS are given by the of the otier, so, thair information is essentially
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shared. 3. Related Problems
Since pairr (y ,y 2 ) not in I cannot occur, tbere isno

meaning in requiring the processors to make compatible In this Section we define and discuss briefly a few
decisions if (ylY 2 ) were to be ooserved. This leads more combinat-.rial problems relevant to decentralized

""to the follwing vsrsion of the problem DS: decision making. All of them will be seen to be harder
than problem DS of the last section (i.e. they contain

"DSI: Given finite sets ,,U , IC YXY and a SD as a special case) and are, therefore NP-Lard (thatfunction f: sets Y 1 1 1 3 2  1 2 is, NP-complete, or worse).

UcU2 are there functions The best known static decentralized: problem is the
uio ¥i•Ui' team decision problem [Marschak and Badner, 19721

i-l,2, such that which admits an elegant solution under linear quadratic
assumptions. Its discrete version is the following:

(?i(Y')1 (•y ))eS(ylY2), "1(y ,y2)eI? (2.3)
2 2 2  y1 2  TDP (Team Decision Problem): Given finite sets YY

Note that any instance of r.I is equivalent to an ins- U1,02, a probability mass function p: Y XY,4 Q, and a
tance of DS in which S(y .Y2). U XU2, V(ylY2)0 1. 1L

tan1oOsin c Sy 2  1 2 y 12 cot function c: Y1 xyU xU 1 *N, find decision rulus
That is, no compatibility restrictions are placed ;n
th. decisions of the tvo processors, for those (yY 2 ) )i: Yi Ui, i-.2 which minimize the expected cost

that cannot occur.
We now proceed to the main result of this Sec'ion:

Theorem 3.2.2: yleY1 Y2eY2

a) The problem DSI restri.cted to instances satisfying Let S(yly 2 )-.(U1 ,u 2 )eUlxU2 : c(' 1 ,y 2 ,u 1 ,i12 ).0}. If
any of the following: we solve TDP, we have effectively answered the question

(i) One or mire of lUl I*21l D01,V2 is equal to 1. whether there exist )l'a2 such that J(Ga 2 )-0. This

(ii) 2 is equivalent to the question whether there exist sat-
S( l 2 , isficing decision rules (with the satisficing sets

"(iii) D1.J 2-2, S(y 1 ,y2j defined as above). Therefore, TDP is harder

(iv) ) 2 1-2, (or Dl-0U11-2) than OS:

may be 4olved in polynomial time. Proposition 3.1.: The discrete team decision problem

b) The problem DS1 is NP-complete even if we restrict is NP-hard, even if the range of the cost function
to instances for which c is (0,1}.

l 0, it; JU21D02 2 Instead of trying to "satisfice" for every pair of
1observations (yY 2 )e YIxY2 , it may be more appr;.

The result concerning the case D1=1 or D2=1 is not priate to impose a probability mass functiorn ..n " %Y
2~1 2

,jurprising. It is well-known that nested information and try to maximize the probability of satisficing.
structures mal be exploited to solve otherwise dif- This leads to the next problem:
ficult decentralized problems. But except for the case
.1=02-2 (which is sort of a boundary) the absence of MPS (Maximize Probability of Satisficiicq): Given

nestedness makes decentralized problems computationaly finite sets Y1 ,Y 2 ,U 1,U2 , a probability mass function
hard. Our result gives a precise meaning to the state- tU XU
ment that non-nested information structures are much p: Y1XY2*Q and a function St Y IXYV 2 . find
more difficulo to handle than nested ones. lx 12 w fim d

Theorem 3.2.2 shows that even if DI1D2 are held cons-i

tant, Lhe problem DSI is, in general, NP-complete. probability of satinficiag J(l,'2)2 )
"There is, however, a special case of DSI, with Dl Pr(((Y)

"constant, for which an efficient algorithm of the We now take a slightly different point of view.
0 dynamic programming type is possible: Suppose that communications are allowed, so that the

"processors may always make satisficing decisions by
Theorem 3.2.3: Let 'l=il.•.,m}, Y2 ={l,...,n} and sup- communicating (assuming that S(y 1 y,2 )#0,

pose that li-jJ<_ D, y(i,j)e I. Then, if D is held V(yly 2 )e Y1Iy,). Suppose, however, that communica-
constant, DSI may be solved in polynomial time.

tions are very expensive, so that we are interested

"Remark: In fact, the conclusion of Theorem 3.2.3 re- in a scheme which guarantees satisficing with a mini-
"mum amount of communications. We will assume that if

"mains true if we assume m-n and we replace the condition one of the processors initiates a communication, all
Ji-J:< D by the weaker condition li-jl (mod n)< D. their infornation will be exchange at unity cost.
The proof consists of a small modification of the (For a more refined way of counting the amount of com-
preceding one. munications, see Section 3.5.)

T1.e condition Ii-jI< D, y(i,j)e I is fairly natural
in certain applications. For example, suppose that the MPC (Mirinize rrobability of Communications): Givern

observations y1 and y2 are noisy measurements cf an finite sets YY;,U1U2 a probability mass function
1 21 21 02aprbbltmasfcio

unknown variable x (yix+wi) where the noises wi are U xU
1 1 2

- 0bounded- w< D/2. p 1 2-1.Y Q and a function. S: Yxy2 2 , find

The condition li-il(mod n)< D may also lise if the decision rules ii: iU U(c}, ich minize

observations y1, y2 are noisy measurements of some th.e probability Pr ( Y (y) )-C or C2 (y2 ) "C) of communica-

unknown angle: yi- 9 + wi ting subject to the constraint
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[ y and (2)#C) then ((yl),• 2CY2 ))ES(YlY2 ). central processor (fusion center) which evaluates
if EU(ylUrC and 22 u=u r)u and declares hypothesis H to be true if

o01 2 0
The proof ot the following ic trivial: u -0, H if u 1=. (So, we essentially have a voting -. .

Propojition 3.2: The problems MPS and .4PC are NP-hard. scheme). The problem is to select the finctions "

In fact, we also have: 22 so as to minimize the probability of acceptinc, the
Proposition 3.3: The problems TDP (with a zero-one wrong hypothesis. (More general performance criteria

may be also considered). .-
cost function) and MPS are NP-hard, even if U I0-U 2 1=2 . Most ivailable results assume that

We could also define dynamic versions of DS or of P(y1 y 2IH)P(YHP(Y2 1 ), i-l,2, (4.1)
the team problem, in a straightforward way [Tenney, "-:""""
19831. Since dynamic problems cannot be easier than which states that the observations of the two praces-
static ones, they are automatically NP-hard. sors are independent, when conditioned on either hy-

pothesis.* In particular, it h2s buen shown [Tenney
4. Decentralized Hy'pothesis Testing and Sandell, 1.981] that the optimal decision rules iP

A basic problem in decentralized signal processing, are given in terms of thresholds for the likelihood
which has attracted a fair amount of attention recently, P°P( 0Y1 i)
is the problem of decentralized hypothesis testing pri P(s IN)-
[Tenney and Sandell, 1981; Ekchian, 1982; Ekchian and ""j.ot ltehdf
Tenney, 1982; Kushner and Pacut, 1982; Lauer and the two sensors are coupled through a system of equa-
Sandell, 19831. A simple version of the problem, in- tions whicrh giver necessary conditions of optimality.
volving only two processors and two hypotheses may be (These equations are precisely the person-by-person a
described as follows: optin-ality conditions). Few analytical results ar.

Two processL.-s S and S receive observations y available when the conditional independence assumption
1 2 is removed (Lauer and Sandell, 19%31. The approach of

y 26y 2 , respectively, where Y. is the set of all pos- this section is aimed at explaining this status of af-
sible observations of processor i. (Figure 1). There fairs, by focusing on discrete (and finite) versions
;re two hypotheses H and H on the state of the of the problem.

o0 We first have:
environment, with prior probabilities po and P res- Theorem 4.1: If Y ,Y are finite sets and (4.1) holds, ....

pectively. For each hypothesis Hi, we are ,lsc given then optimal 1 2
the otialchoices for l'2may be found in poly-

the joint probability distribution P(yy 2H i) of the nomial time. 1'("2

observations, zondit.io, ed on the event that H. is true. So,-under the conditional •ndependejice assumption,
U decentralized hypothesis testing is a computationallyUpon receipt of )i pro'cessor Si evaluates a message eay.rblm.Ufotnael-ths"snoth"cs.i•

i easy problem. Unfortunatelyi this is not the case vhen.-""
u.6{O,i} according to the rule uiý i(Yi:, where the independence assumption is relaxed. Our main re-

S:'i{O,l}. Then, uand ua si sult (Theorem 4.2) states that (with Yl" Y fihite
(011 heu an u2 are transzc.itted toa1 2

sets), decentralized hypothesis testing is a hard com-
binatorial problem (NP-hard). This is true even if we .. -
restrict to the special case where perfect detection
(zero probability of error) is possible fur the corres- -H0 , H, poding centralized hypothesis testing problem.
Although thir is in some sense a negative result, it is -
useful because it indicates the direction in which
future research on this subject should proceed: .
Instead of trying to find efficient exact algorithms,
research should focus on approximate algorithms, or

Y1 Y2 exact algorithms for problexas with more structure than
that assumed heze. Moreover, our result implies that
any necessary conditions for optimality to be developed
are likely to be deficient in one of two respecta:
a) Either there will be a very large number of deci-
sion rules satisfying these condi~tions. ---------
b) Or, it will be hard to find decision rules satis-
fying these conditions.
In particular, optimal decision rules are not given in
terms of thteý'nold- an likelihood ratios.

Of course, there remains the question whether ef-Yz(YIs ficient approximate algorithms exist for the general
U Y-- | 2 =Y 2 (y2decentralized hypothesis testing problem, k.r whether

we must again r,-strict to special cases of the problem. 9
We now present formally the problem to ba analyzed.

DHT: (Decentralized Hypothesis Testing, Restricted tonublastances for which Perfect Centralized Detection is
0 1 2Possible). We are gi-ven finite sets Y -Y a rational number

Figure 1: A Scheme for Decentralized Hypothesis number k; a rational probability mass function
Testing. p: Y1 xY2 *Qr)[0,ljg a partition

Such an assumption is reasonable in problems of detec- ..--.

tion of a known signal in independent noise, hut is typ- 4
iLally violated in problems G. detection of an unknownsgnayo.-.-
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{kAo} of Y l"2.* Do there exist • 3 ,IY-..O,1}, P[.(Y I rn (1),y2,U1  .1 l y 2 1 CIm)xY2S) there is
Sgy 2-{20,1} such that J(bl,42)< k, where a protocol which guarantees satisficing with not more

." )- Py 2 1( 1 2C 2 than K-i bits of communications. (Here re'l(i)-
,{yeY,:m(y )-il.)

(y1 ,y 2)6Ao the envisaged sequence of events behind this defini-
"ion is the following: Each processor observes his

S(y1 ,y 2 ) 1  y )[-l ) C4.2) measurement y eYi, i-1,2. Then, .jne of the processors"

say processor 1, transmits a message m(yl), with a
.emarkq 1. If we let k-0, then DHT is a special case single bit to the other procescor. From that point on,

it has become common knowledge that yl6Yifm-l(y )I %
of c,'oblem fl (Section 2), with Ua1 1- 1U2 1-2, and is therefore, the remaining elements of Y1 may be ignored. -

polync•%dally solvable, according to Theorem 3.2.1. in We can now state formally the problem of interest:
gensr,,t DHT is a special case of IC'S and TDP (Section
3.3) with 1U 11-121-2. Consequently, Theorem 4.2 MBS (Minimum bits to satisfice): Given an instance P

below prOves Propositijn 3.3 of DSI and Ke N, is there a protocol which gurentees
2) Clearly, the optimization problem (Minimize J( satisficing with not more than K bits of communications?

By definition, MBS with K-C is identical to the
with respect to 1, 2) cannot be easier than DHT. problem DS0. Moreover, MBS with K arbitrary cannot be

Since DHT will be shown to be NP-complete, it follows easier than MBS with K-0 (which is a special case).
that the above optimization problem is NP-hard. Therefore, MRS is, in general NP-hard. Differently
3) In DHT, as defined above, we are only considering said, problems involving communications are at le-at
instances for which perfect centralized detection is as hard as problems involving no communications.
possible: Think of H a3 b.ing the hypothesis that We have seen in Section 2 that when lu1l-lU21-2.

0
(yl,y2)e Ao, and H1 as being the hypothesis that DS7. may be solved in polynomial time. Therefore, MBS .

0 1 with K-0, 1 1-2, ',.21- is polynomially solvable.
(yI'y 2 )e A,. Certainly, if a processor knows both y., However, for arbitrary K, this is no longer true:

Y2' the true hypothesis may be founa with certainty.

For the decentralized problem, the cost function Theorem 5.1: MBS is NP-complete, even if 1u 11-1U 21- -

•c) :•2) is easily seen to be the probability of error. {(,01 aad even if we restrict to instances for which,

4) The result to be obtained below remains valid if the for any (yl,y2 )eI, either S(y 1 ,Y2 )- 1(0,0)1 or
fusion center uses different ru'es for combining the S(yy){(1,1)}. 

.messages it receives (e.g. u-C(uV( u2 ), or if we 12
leave the combining rule unspecified and try to find The jove theorem proves a conjecture of A. Yao
an optimal combining rule. ([ao, 19791. The proof was mainly constructed by

C. Papadimitriou and may be found in .'Papadimitriou
Theorem 4.2: DHT is NP-complete. and Tsitsiklis, 1982).

We should point out that the special case reterred
"5. on Designing Communications Protocols tu in Theorem 5.1 concerns the problem of distributed

function evaluation: we are given a Boolean function
Suppose that we are given an instance of the dis- f:Y xY -(o,11 and we require that both agents (proces-

tributed satisficing problem (DS) and that it was sors elentually determine the value of the function
- concluded that unless the processors communicate, (given the observation -input (y1 ,y 2 )), by exchanging

satisficing cannot be guarantced for all possible ob- a minimum number of bit3. In our formalism;
servations. Assuming that communications are allowed
,but are costly), we have to consider the problem of S(Y1 ,Y2 )- {C(,0)} if f(y1 ,y 2,=0 and S(y 1 ,y 2 )=(l,l).
designi• g a communications protocol: what should each if f(y,yl)-l.",
processor communicate to tht other, and at what order? In Section 2 we had investigated the complexity of
Moreover, since communications are costly, we are DSI by restricting to instances for which the set I
interested in a protocol which minimizes the total had constant degree (D ,D ). This may be done, in
number of binazy messages (bits) that have to be com- 2
municated. (The word "bits" ab~ve does not have the principle, for MBS, as well, but no results are avail-
o.nformation theoretic meaning.) able, except for the simple case in which D0-D2-2.

Before proceeding, we must rake more precise the In fact, when Dl D_-2 each processor may transmit

. notion of a comuniation protocol and of the number his information to the othei agent by communicating a
of bits than guarantee satisficigS single binary message and, for this reason, we have:

G n ite.U 21S f e o Proposition 5.1: n stc restricted to instances for whichDS1 we will say that: 0 -D-D2 may be solved in polynomial time. Moreover,
There is a protrcol which gua a-itees satisficing 2

an optimal protocol requires transmission of at most
i-t c n si ia n e two binary messages, one from each processor.

of the problem DSI. (That is, if there exist satis- When (DI,D2) is larger than (2,2)C there is no
ficing decision rules, involving o communications., .O�)it

We then proceed inductively: much we can say about optimal protocols. However, it
1here Is a protooslwhich guaran ees satisficir~q ib easy to verify that there exist fairly simple non-

with K bits of coamunications (Ke ), if for bOme optimal protocols (which may be calculated in poly-
ie{l,21 (say. i-l) there is a func ion m:Y --(0,L}, nomial time) which involve relatively small amount.- of
suc'h that or each of the instances1  conrunication. This is because:

1'-( - (0),Y 2 ,U,U 2 ,I O[(Y 1fm-(0))xY2 ),S) 1nd Proposition 5.2: Suppose that I has degree (D1 ,D2 ) and

_that SlY1 ,Y2 )#0, vlY 1,, 2 )el. Then information may be

That is A l A-YlXY2 and AOr A 1_0 centralized (and therefore satisficing is guaranteed)
% by means of a protocol requir.ing communication of at

236

.. .- ".......
"k~~~~~~~~~~~~.... .... ,...-. -.-.-. ,-. .. , -- ..........- ,.................... , . . ... "..-...



e/
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volves no on-line communications may be very hard to Optimization: Algorithms and Complexity, Prentice-
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difficulty of a problem, because it is based on a appear in Information and Control.
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sors to communicate even for some instances of DS for pp. 209-213.
which this would not be necessary. Even if these
extra communications -being redundant- do not lead to
better decisions, they may greatly facilitate the de-
cision process and -from a practi;al point of view -
remova some load from the computing machines employed.

Concerning the problem of Uistributed hypothesis
testing, we have shown that it becomes hard, on.e a
simplifying aasumption of conditional independence is
removed. This explains why no substantial progress
on this problem had followed the work of Tenn.y and
Sandell (1982].

From a more general perspective, we are in a posi-
tion to say that the basic %and the simplest) problems
of decentralized decision making are hard, in a precise
mathematical sense. Moreover, their difficulty does
not only arise when one is interested in optimality.
Difficulties persist even if optimality is replaced
by satisficing. As a consequence, further research
should focus on special cases and easily solvable
problem as well as on approximate versions of the
original problems.

In cases where communications are necessary (hut
costly) there arises naturally the problem of desig-
ning a protocol of communications. Unfortunately, if
this problem is approached with the intention to mi-
nimize the amount of communications that will guar-
antee the accomplishment of a given goal, we are again
led to intractable combinatorial problems. Therefore,
practical communications protocols can only be desig-
zred on a "good" heuristic or ad-hoc basis, and they
should not be exjected to be optimal; approximate •
optimality is probably a more meaningful goal. Again,
allowing some redundancy in on-line communications
may lead to substantial savings in off-line computa-
tions. "
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OPTIMAL DECENTRALIZED CONTROL OF FINITE NONDETERMINISTIC SYSTEMS1

2•,
Robert R. Tenney

Massachusetts Institute of Technology, Cambridge, Mass. 02139

Summary

A control problem with a system. modeled as a nonde- where ,'I
terministic finite state machine is considered. Several f (x) = (Jf(x) (2.3) 0
agen•s seek to optimize the behavior of tha- system xe"x
under a minimax criterion, with each agent having dif-

fertinformation about the system state. The no- will not be distinguist.ed from f itself. The preimage
ferent ofay tder f will-be denoted bydeterministic model of uncertainty, combined with the - -
minimax criterion, lead to equivalence relations on the x - f (y) = {xlyef(x)0 (2.4)
past input/,utput histories of each agent which genera- -"
te simple sufficient statistics for the optimal control f will s..jt be distinguished from its extension to\ - laws. This sheds light on the basic nature of decentra-
lized control and permits complete solution of a parti- f .
cular class of problems. -Le ') L'.{'1 " f ' -1 (2.5)

1. Introduction 7inally, an cost functional

A system to be controlled is assumed to be described J g X ý IR (2.6)
as a finite state, nondeterministic automaton with in- will have an extension
puts supplied cy several control agents. Each agent (2.7
receives an observation at each discrete time step e( - max J(x),.• ~xex ".
which indicates a set in which the current state must --
lie. Each 2bservdtion, coupled with knowledge of the which will also not be distinguished from its restrict-
"s-ystem structure, can lead to inferences about the ion, J. '. -

past system behavior, hence about the past observations Subspripts will indicate the agent associated with
of other agents and thus predictions of other agents' e. r inl n
decisions. This simultaneous interweaving of inference Cartesianle.odup ers.ri ts will indicate e ts
by the agents, as each deduces the potential actions of Cartesian product set: e.g. x - (x(l). x(t))6 Xt.
others, and the deductions of others about itself, etc. S Dynamics
leads to some of the complexity of the analytical
process for general decentralized problems. The system to be controlled will have a finite state

"Based on this model structure, an approach to space X with N elements and dynamics
addressing the problem of designing the optimal (in the x(t+l) e f(x(t), u (t), u2(t)) (2.8)
appropriate worst-case sense) decision rules has been 1 2
developed. The approach is based on the identification The state and its dynamics may be taken to include any
of the set of sufficient statistics for each agent to interagent communication mechanisms. The initial star. i9
iuse and the dynamic ralations between them; these is assumed fixed, known to all agents and is denoted

sufficient statistics are no more than the intertwined x0odeductions of the agents about each other truncated at Observations .
the paint where they are no longer pro)ductive. The se (t) e h Wxt)) (2.9)
of these statistics form an extended state space oYi ver2i i
which dynamic programming may be used to derive the are available to each agent at each time just before
iptimal decision rules. ui (t) is to be selected. "

. ot a r mFm tEach agent is assumed to have perfect recall of .1-.
past observations and decisions. The decision rule by

A. Notation which u. Ct) is selected is restricted to being a caus.l -
i

This work will use set valued functions function of the local information sequence .Y . (.,t) y t ... (2.10)•
f:X ÷ 2 Y (2.1) Yi u (2.10)

Tto model nonde:erninistic behavior, i.e. y e X f(x) . represants the entire sequence of decision rules
indicates that any ei.m-ýnt y of the set yCY may arise f a t
as a result of applying tr ts.e point x. The exten-
sion of f to a function on the .ý,wer set of X C. Objective

x ,Yf : 2X., 2y (.O2ecie 2.-)
ef (2.2) A cost function is defined as

.J: X xU xli IR (2.11)S-upported by the Office of Naval Research,under con- 1 2
"tract No.00014-77-0i32 (N041-519) is gratefully
acknowledged. Taken together, the dynamics (2.8-2.10) and control

T T2 Laboratory of Information and Decision Systems,MIT. laws r1, F2 recursively define a set of possibl joint
Rm 35-213, Cambridge, MA 02139. state, control, and information trajectories.
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Vi

ýfine Definition: An information relation R is contained in

rT ,T anot.her R'(RýR') if there is a homootorphism from£,•2) = max max J(x(t),uljt),u 2 (t)) R ) R'.
tEtO .... TI x(t)

u1 (t) (2.12) The containmeat relation is clearly reflexive (if II
t is the identity map) aad transitive (through co:qposi-

U2  tion of ý. '.3). It thus imposes a structure on the set

of i normation relations which is partial order on
• A •.e " equivalence classes, where:

.intly possible at time t as determined by this
.curbion. The overall objective is to minimize this Definition: R is equivalent to R'( R SR')
unction, if RCR' and R •R'.

Brth the partial order and equivaleihce relation have
II. The Information Relation useful interpretations in the decentralized problem.

Definition (. Autc orphisms

Begin oy considering the autonomous case. This sectior. fecuxsec on the equivalence Son in- 0

efi-ition: The global conditional state. set at time t formation relations.

denoted ,t1•X, is the set of all rossible states Definition: An autcmorphism n on an information rela-
which the system may occupy at time t and whi-h Pay tion R is a homomorphism from R to R. If bu.: "
be reached along a trajectory xt' which is poss'Lle and ý2 are 1:1, then it is an isomorphism. -

given both agents' observation sequences. Otherwise, it is a reducing automorphism.

This global conditional state set is analogeas to The automor;!hisms which are not isomorphisms ar ot "
he Markov cunditional state distribution; it may be considerable interest.
omputed recursively.

Definition: An information relation R is irreducible,emma i: The global cunditional state set may be if all automorphisms on R are isomorphisms. Other-
computed from wise it is reducible.

-x(0. -oDefinition: The reduction of an information relation

='t+l) f(ý(t))(1h
1
(y_ (t+l))nh 2(y.(t+l1)) R:ZI x %. Zx by a reducing automorphiim

(3.1) 1 2
'roof: Set manipulations. 01 = 0 ) is an information relation

12 -X
R':•(Z) I x '(Z,)•2 where " "

Wv. Information Relations R 1 (Z"1 ",2 ,2

o'(0I(ZI)'4 2 (z2 )) * R(OI(ZI).0 2 (z2 )) (4.4)%. Concept "- 1', .2'° 2•

)efinitior: An information relation R for a two agent D. The Core
problem is a function from two sets Z (t and Z (t)
tothepower s t auntianfothr sets ((2 Every i..formation relation can be reduced to an

autonomous irreducible one by suitable compositions of reducing
systems, R is a primitive information relation if automorphirms (thus .y some single reducing auto-

ZlW: - Yt Z (t) = Yt,X is the state space, and morphism).

t t This notion is the most essential part of this work.R (yIy2 t) (4.1) ,"
Definition: A core of an information relation R,

The motivation for studying the information re- denoted core (R) or R*, is an irreducible infor-
lation is to reduce a primitive telation to one of mation relation obtained from R by some auto-
smaller dimension which s:ill serve3 for the generation morphism.
of optimal der-ision rules. The generic sets Z. which The core has a number of interesting properties.
comprise any relation will be aggregatiors ofithe e hr ro r
primitive information sets yt . The remainder of this The most basic rely on the following lemma.

section establishes the algebraic structure of Le.usa 2: Tf 1wo irreducible information relations R 1
information relations. And R' are equivalent under5, then they are equali

B. Humomorphisms Proof: If R 5 R', then there is a homomorphism 0 fros-

The global conditional state sets have a lattice R to R', and anotner, 'from R' to R. S
structure superimposed on them ily the set containment Consider the composed homomorphism ' from R to R: . .. .
relation. Information relationg have a similar •
utructure which, while not a lattice, is (a-most) a $ 1 (zl) = ¢i(¢I(zi)) (4.5)
partial order. 2

Definition: A ho",omorphism 0 from R, defined from Z 2 2 2 2

and to 2X, to R' , defined from Z Z_ to 2 X,.
is a2 pair of functions 2 -l',4 That ý is indeed a homomorphism from R to R is shown

2) by
1:Zl zi (4.2) l". '2 z

R(z1,i )4_- R' (l(z1),4 (4.6)

satisfying , ( ))

R(z ,i )R'( 1(z1),Y1 V z Z 1 2 2
1 2 1 112 2 2 2 ~ ~ ~

(4.3) V 2 e Z ;1.7)
2 2 2 ..%-.

Up to isomorphism. This qualifier will be left .-
implicit in the sequel. *.
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by f' being a homomorphism. Thus * is an automor- Pro__f: Since RCR', there exists functions 0•I Z i
phism on R, and in fact must be an iscmorphism s"tisfying (4.4). Construct functions
since R is irreducible. However, the composition
of * and 4' can be an isL4Tlorphism if and only if -1:Zi x . Z! X Y where
* and 4" are isomorphisms; hence R and R' are equal.

This le(za immediately gives: Ii(ziY i (),y (4.15)

\ j Theorem 1: The core of an informatior relation is Then for all z2 and
unique. Moreover, if RR', then

Score (R) - core (R'). F(R((z ,Y1 ) ; ,)))

Proof: Any core (R)CR, since a homomorphism from
R to a core (R) exists by definition, and a -(R(z_ ,_/hlyl) ( (4.1l6}
lhomomorphism from core (R) to R exists by con- 1
struction: core (R) is a (perhaps relabeled) - £CR'( 4,z 1),4 2 (z 2 ))) (y ' 2 (Y2 ) (4.17)
"restriction of R to subsets o: Z1 construct the
homomorphism from elements of these subsets back Lnto by (4.4) and set inequalities, and this
their original values in Z1 and Z2- If two cores, - F(R')(4'~zlY 1),42(z 2 ,Y2 ) (4.18)

"core (R) and core '(R) exist, then

core (R)_5 R.5core '(R) k1.8) This establishes the first half of (4.4) for '4+;
the other half is shown by a symmetric argument.

BothThus *+ is a homomorphism from F(R) to F(R');
lemma 2 they must be equal, hence unique. hence FrR)m F(R').

Moreover This sets up the second major result:

core R) R5R'5 core CR') (4 Theorem 2: Let R(t) and R(t+l) be primitive inform-

similarly implies core (R) - CR'). ation relations at successive times. Then

"At any point in time Z.(t) in R(tNj will represert a core CR(t+l)) - core (F(-ore R(t))) (4.19)
reduced, perhaps trivially, version of 'f. There i. a Proof: By a 3.
natural way to extend this aggregation to its counter-
"part at time t+l. R(t+l) - F(r(t)) (4.20)

Definition: The expansion of an information relation From Theorem 1
R(I) to another relation R(t+l) is denoted core (R(t))S R(t) (4.21.)

R(t+l) - F(R(t)) (4.10) Hence applying lenia 4 to each containment in (4.21)

and is constructed by setting F(core(R(t)))S F(R(t)) (4.22)

a C (t+l) - it) x Y. (4.11) Then by Theorem I and (3.2n)
i•--/ / " ' iand

. .. ".R(l)z(t+l),z(t+l)_ core (F(core R(t)),) - core(R(t+l)) (4.23)

R-t+l)[ zCt ), t . Definition: The ateady st~te core information relation
1 1  y2  R*, if it exists, is the core of some primitive

Sf(R(t)[z Ct), (t)2)ih-Cy_)(h~(y_ )__1 information relation R(t) and satisfies

1 2 - 1 -2 R* - core (F(R*)) (4.24)

The structure of this expansion is captured in If a steady state core can be found for a system,

- 3 Lemma 3: If Rlt) is the primitive relation at time t, then a great deal of the work required to solve the
then-F(R(t)) is the primitive relation for time ......... system is complete. Howeverý_not all systems have a
t+l. steady state core.

• Proof: By definition, R(t): Y x Y2 , and The core dynamics alterLtely expand Z1(t) by

R(t) (y o x(t), the global conditional state appending Y., a new observation, and then reduce it via
t t an equivalent relation implied by an automorphism 4'/ e ae n(y,y2). Identifying y. i (4.13) wii

e 12 The equivalence relation combines those eleme'its of
the observation y.(t+l) yields Z. x Y. which need not be distinguished in the future

(t+ 1Y 2 t+ as far cs the core dynamics are concerned. The entireSl2 sequence of these equivalence relations mao every ob-
servation sequence yt into some element of Z (t, and

/-f(ý(t)) h (y (t+l)) h 1(y(t+l)) (4.13) 1 3- - 1- 1 2  thus dictate the structure of a finite state machine

S• : - x(t+l) with 1, as an input set and Z. t) as the states.

by (4.1). Thus R(t+l) is a primitive information Def~nition: The local core observer for agent i is
b .relation h the system with state set Zi(t) and dynamics

"Lemma 4: If RgR', then zi(t+l) f fi(ziWt), yi(t+l)) (4.25)
"F (R) F(R') (4.14) 1 (z i W) yi(t+l))

where the Z.(t) are the components on which R*(t) is
defined, ani . is a component of the reducing
automorphism useA to reduce F(R*(t)) to R*(t4l).

Thus the core ,narmics define some automata for
processing local observations in a way which maintains
the relationship described in R*.
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from the definition of a homomorphism. The y defi-
V. Decentralized Estimation ned in (4.9), must achieve a value no larger than

J*(RI'), and the best y is at least as good as this
one, so th- conclusion holds. This immediately

A. Problem suggests the third majr result:

The general decentralized estimation problem is to Theorem 3: Let R(t) be a primitive information rela-

find the tion and R*(t) its cor.!.
mnThen""' -

mi max max J(x(t),ul(t),u (t)) Then
T T te 1,...,T x(t)possible 2 J*(R(t)) - J*(R*(t)) (5.11)

1 2 45.l Proof: From theorem 1, R(t) S R*. Applying Lemma 6 in

where x(t) is possible if x(t) e ft(i"), (the t-fold both directiors, the conclusion follows.

composition of f with itself). The information
restriction VI. The Control Prob.cm.

t
ui (t), yi (t) (y 1) (5.2) A.. Information Dynamics

still applies. The definitions of information relation, homomor-
phisms, containment, and cores established in

Define section IV carry over to tie control problem without ...

t t change. The expansion prociss is the only place where
J(yl( ),y 2 (t) - max J1x(t) ,Y 1(X),y 2 (y2)) (5.3) new intormation relations -are generated, so the .

X(t) influence of decisions on dynamics recq'ires a modifi-

t cation there.
yl possible Definition, The expansion of an information relation R

,t dec.sion rules yi :Zi Ui is an information

Y2 relation R', where

T .
Each component of rT may be chosen separately, since R' = F(R,y 1 ,y 2 ) (6.1)

decisions do not affect dynamics or costs other than 2

that a single time; J depends only on decision rules k' Zi x Z2 X. (6.2)

at one time. Thus
Z! Z. X Y (6.3)

Lemma 5: The solution to the decentralized estimation 1 i (
prob•em may be found by solving the sequence: "

minimize J(y 1 Ct),Y2(t)) (5.4) R' 1( 1 ) (z 2 'y2 )) -(R(zl'52),yl(z,)Y2 (z,))
Yl it, '2 W n / 1 h' * (y) -1(• (6.4) "-_ ... _

B. Use of the Informat.on Relation Definition: Let 0 be a homomorphium from R to R'.

Def.niti3n: The optimal value of an information Then a decision rule Yi : Z, U is contained in

relation R in a nondeterministic decentralized
estimation problem, denoted J*(R), is . i Ui,

- mi maX J(x,'y1 (zI)'Y 2 (z2)) (5.5) if

l2 zy.(z.) = ( y.(4i(zi)) V zi ei (6.5) •--.

z 2 ez1 2

xeR(z ',z) With this notion, the results of section :V gene-
ralize to the control case as:

with Z and Zthe sets on which Rl is defined, aiid
1 Theorem 4: Let R and RI be information relations, And

the restriction. . iY decision rules of the appropriate structure.
U zi L (5.6) "ro hu r

a) if R is a primitive information relation, then

Lemma 6: If R and RI are information relations, then so is F(RYI7y 2 ) .

R• J(R) -- J() .7b) if RCR', ylSyj and y25yi, all by the same

Proof: If RC R', then a homomorphism t '2). homomorphism, then )

exists from R to R'. Consider any strategy
-(Y;) with F(R, C,_2 ) F(Ry', Y (6.6)

Z! : Z * U) If R is a primitive information relation, then -

core (R(R,y 1 ,Y2 ) core (F(core(R),Y1 ,Y2 ))
(6.7)

Build a strategy Y- (yiY 2 ) with
Proof: All pro.fs are direct extension of

y. (z1) - (i(($ 1(z)) (5.9) a) Lemma 3

Then the inequality stems from the fact that b) Lemma 4

*z i C- zi (5.10) C) Theorem 2, using (a) and (b).

R(zl 'z 2) R ' 1€ (z j 'O ' 2 (z 2)" "
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B. Costs

Properties developed in Section IV for the estima-

Definition: The cost of an informnation relation R wi.h

compatible decision rules yl, 2 is

,J(,yiy 2 ) = max J(x,y (Z ),• (z (6.8)

13 • • xER(,,Z21.'z

I." " .2

The overall problem objective (2.13) becomes

J(r ,P max max J(x(t),Y (y )'Y (y~)
12 tE(l .... T) t1 2

t (6.9)
"y 2" t ti-- xC:(R(y ly

max J(Rt(t)tY,(t),y 2 (t)) (6.10)

where the dependence of R(t) on prior decision rules
is left imolicit. Thus the overall objective can be
written in terms of costs of primitive relations with
decision rules.

The final result needed is:

Theorem 5: Let R and R', be information relations,
.- .with YY2 and yjyý compatible decision rules.

Then

'.- * a) If RC R', "(iC Yj' and by the sain

homomorphism ý, then

J(R,y'f, 2 ) < J(R' 1' Y) (6.11)

ob) If R* core (R'),Y 1•l, and •2 $ by the

same homomorphism ?,, then

J(R;-, ,¥2) J (R',y (112(

"Proof: Also direct extensions of previous results.

a) Lemma 6
b) (a) with Theorem I.

C. General Solution
Let R*(t) m core (R(t)., where R(t) is the

primitive information relation created by decision

Srules prior to cimc t. From Theorem 4c,.

R*(t+l) = core (F (R*(t),y 1 (t),(,(t))) (6.13)

".•...=F* R*i(t),y 1(t),Y 2(t)

and the overall. objective is

J(a ,f ) max J(R*(t),yI(t) ,Y.'(t) (6.14)

where r1 and F2 are now sequences of decision rules

whose arguments are in Z (t) and Z (t) respectively.1 2
Solution of tnis problem would involve straight-
forward minimax dynamic programming if the set in
which the R*(t) could like were determinable ahead of
"time. Unfortunately, it is not known how to do this at
this point; however, ore may construct the set of all
cores reachable under all Fl, r 2 from R*(0) and take
this to be the requisite set.
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SMINIMUM SENSITIVITY INCENTIVE CONTROL APPROACH TO TEAM PROBLEMS

Tamer Baqar, Jose B. Cruz, Jr., and Derya Cansever
Department of Electrical Engineering and

Coordinated Science Laboratory
University of Ili.inois

1101 W. Springfield Ave.
Urbana, Illinois (1801 ..X* ..

- ABSTRACT Zheng and Bagar (1982)], which involve a hietarchy in

decision making and a suitable information structureS -In this paper we analyzea class of two-agent team for the decision maker at the top of the hierarchy,
de• ision problems with a hierarchical decision struc- that allows him to design a policy which in its turn
ture, .'kerein one of the decision makers may have a induces the other decision maker with a different ob-
slightly different perception of the overall team goal, jective functional to behave in a desired manner.
with this slight variation not known by the other agent Recently in [Cansever and Bagar (1982)], optimal incen-
who is assumed to'occupy the hierarchically dominant tive schemes have been used, within the context of
position. The leading agent has access to dynamic in- Stackelberg games, to minimize the effect of changes
formation and his role is to announce such a policy in the parameters of the follower's cost functional on
(incentive scheme) which would lead to achievement of the leader's optimum cost value, by simultaneously
the overall team goal, in spite of the slight varia- achieving a desired goal. Here, we direct our atten-
tions in the other agent's perception of that goal. tion to problems which are nominally team, and derive
which are not known or predictable by him. We may call incentive schemes that are least sensitive to devia-
a policy with such an additional feature a "minimum tions in the hierarchically inferior decision maker's
sensitivity" incentive policy. We obtain,ain the paper, perceptions of the uncertain parameters. The fact that
"minimum sensitivity" policies for the lea~ng agent, the underlying goal is common (that is, the nominal
for a general cost functional with convex sructure, optimization problem is a team problem-a property that.
which are least sensitive to variations in Ahe following may be destroyed in the decision process) can be ex-
agent's perception of the team goal. In somn special ploited to obtain very appealing minimum sensitivity
cases, we show that the robust feature of thl incen- strategies, as we will show -in the sections to follow.
tive scheme is maintained regardless of the z•gnitude
and nature of the variations, and illustrate the theory The problem is formulated in Section II. In
with an example arising in armament limitatio and Section III we introduce sensitivity functions and
control. obtain robust affitte strategies for a general class of

convex cost functionals. In Section IV we provide a
I. INTRODUCTION geometrical irterpretation for total insensitivity when

the objective functional is affine in the unknown •'
The main characteristic of team decision problems parameter. Section V deals with the gcncralization of ."

is the presence of several decision makers with a some of these results to the multiparameter case, and
common objective iunctional which is to be optimized Section VI illustrates the basic ideas developed in
jointly (but possibly in a decentralized fashion) by this paper using a model from armament lInitation and
all decision makers. An underlying stipulation in control. Concluding remarks of Section VII end the
research on team theory has been the assumption that paper. -
all agents perceive the comon goal in exactly the same
way, and face exactly the same mathematical optimiza- II. PROBLEM FORMU'LATION
tion problem [Marschak and Radner (1972)]. In this
paper we relax tbis basic assurption and allow (in the Consider a two-person deterministic team decision
context of two-agent problems) one agent to have a problem in normal form, described by the cost func-
somewhat different perception of the cormon goal and tional '(y1, v2 ,a), where y7ri denotes the strategy of .•.-.".
to quantify it in a slightly different way. Further- DMi (i'th decision maker) and niACR is a paraweter
more, we will assume that the other agent is not in- on which the cost functional depends. Let uEU-0n, 0
formed of the existence of this discrepancy in the CV -VRm denote the decision variables of DMI and DM2,
perception of the common goal, but is able to mouitor respectively, and assume that r 1 - y :v-*u}. 2 =-v; i.e.
the decision of the former by occupying a higher DM1 has access to the decision value of DM2. DMI also
(dominant) position in the decision process. The knows the precise value of the parameter a (say ao),
problem we address to is the design of a suitable stra- whereas DM2 perceives its value differently (say n+C A),
tegy for the agent who occupies the hierarchically wh.'ch in turn gives rise to a different cost functional
superior position and who still adopts the original from his point of vie%, namely, J(y 1 ,y 2 ,a+)O J(y1,y 2 4^).
team objective functional as his own, sLch that the Furthermore, DMI does not know the exact value per-
change in the minimum value of the team cost because of ceived by DM2, but his ultimate goal is to see that the
the discrepancy in the perceptions of the common goal lowest possible value is attained for J(r,7y2 ,o). The
is kept to a minimum. Ideally, the hierarchically decision structure of the problem is aseumed to be
superior member of the team would seek not to be hierarchical, in the sense that DX1 is the dominant
affected by this discrepancy, if this is at all decision maker and has the power and means of declaring
possible. his policy in advance and enforcing it on the other DM.

Hence, while DM2 is faced with the problem of minimi-
We will approach this problem using optimum incen- zing J(y 1 (v),v,a+) over vCV, DM1 wishes to choose a

tive deaign schemes [Ho, Luh, and Olsder (1982) and yle r1 (in total ignorance of m+) that would eventually
lead tc a minimum value for J(yl(v),v,a ).

This work was sup, orteA by the Office of Naval Research By an abuse o" notation, let J(u,v,m) denote the
under Contract N00014-82-K-0469. cost functional on the product space UxV, for each
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aEa, and assume that this functional is strictly con- where the arguments site eva .luated at ,a- ut, v- vt.
vex on UxV• for each oeA, in twice continuously dif- a- 0 Note that the required inverse in (5) exists
ferentiable ir. Its first two arguments and continuously under the initial hypothesis that J ia strictly convex
differentiable in its third argument. Furthermore, let in (u,v) for all oCA.
us den~ote the unique minimu~m of J(u,vaO0 ) by
(ut,vt)E UxV. Restricting DM1 to affine policies in Now, since the pair (ut v lbly iiie
r,, we first note that the policy J(u\v ,,, we already know that

u v

"(1 v on whichthar et e fs uaterdut t -mof( (

where P is an (nUm)-matrix, has the appealingo - in vi e that the froirs duitverm of (3) end
fertyothat if D s percptin o irgens• a onthenuous hence rt(ue) vanish. Then. the dominating term in the
sin d ferenythabt i l eas toir t d sred vauertherm ore Taylor expansion of J(u+,v+a. O) around oto" is deter-
min + l mined by the second-order sensitivity function:

tovbe a cooperative one since the problem faced by DM2 (01 d o)dJ(u+,v+,ce O)hai+ v ob
is 2

""'1 ~~i VI .v)-u (v-v) JC (2a) I u(Utv+/dc). -o, .iv+ (etvt,..°) -o

+ + + 2.+ . + Id'awhere P If mn , hov the apre m cese

whosperrythat iizin 2soluretion (sa sat i teser exasn i + satisfy in

i vSinced the seconds t erm iszer inst view ofunbi (c y

tame asri ut. The problem hwevade ss, i the prbe esequl thtteeo xs" stsyn
is whther itpisapossible tonchoose aprobust plcyd by DM .( dju.v °)d+2

(by choosing P appropriately) so that either u'-ut and J (u ,v ,o. )P+J (u 'V 'a ).0o (8)
v+vt, or the discrepancies will be small whenever a+

"is close to co; in other words., we seek either total
"insensitivity or minimum sensitivity of the optimum sufficient condition for this is, of course,
value of J(uvdnO) to variations in the perception of
DM2 (of a) by a[proper choice of y+. J (U tvtoo P0. (9)

III. INTRODUCTION OF A S )NSITIVITY FUNCTION AND which is also necessary if the second term in (8) does
DERIVATION OF MINIMUM SENSITIVITY SOLUTIONS not vanish (at least one component is nonzero).

As a measure of the sensitivity of J(uv 0e a) with Wthen vr vanishes, not only the second-order sen-
respect to deviations ia the perception of DM2 of a sitivity function, but also the third-order sensitivity
from its nominal value sO, let us introduce the total function
derivative of J(u,v,ao) with respect to a, when u ou+, d

3  
+

%v-v. satisfying (2b). and at the point a We 1 3 (a d J(utvt.a° )/d. + o (10)
cal thifunction the fiAst-o r¢rr sensitivitON fNhction -a

of ERuV~ATON wit respect SESto VT SOUTON aot %ainv ofVanishes. t leauset ocoapone n s (ycanonulerof).f

(1) a the optimal response of DM2 as characterized f hentiatio n s only i le eith er vtno
ofwthrespect tooevitons h aercept io n vieD of i y becauseition ut oalrrs th e either (tb ofrdif
(uniquely) by (2b): aspoutane

~~~~[u from ass products Hence. unde the condituionetoal ucto

d 0
er +v+ ov + that admits at least one solution, and when DM1

SI (atW ( 2b), a) d the corresponding policy (1). if DM2's percep-
otion J ° (of a) stays within an -- neighborhood of it
(dJ/dv ,(dv fer nominal value o0, the 3rd order Taylor approximation

"-*[3u(ut vt0°)P +J(ut vtcO) vt, of the effect of this discrepancy is zero. We now
u " = a (3) summarize this appealing feature of the linear policy

where (1) in the following proposition.
t + + +v dv (a)Ida
a la+ ,o Proposition 1: Let condition (9) be satisfied, and

let P" denote a solution to (8). Then, if DM1 employs
/ and is determined from (2b). To obtain an expression the policy

for vt, we note that (2b) is in fact an identity for *v - ut+Pe(v-vt) (la)

all a+CA, since it uniquely deternines the optimal
response of DM2 to the announced policy (1) of DMI,
with his perceived value for a being 0+. Hence, dif- and the unique minimizing decision of DM2 is
ferentiating (2b) with respect to a , and evaluating v+(a+) , arg min J(y+(v)•v'a+). (lib)
the resulting expressioat a+ -aO, we obtain v

ve R'

[P'JuuP+P'Jvu+Ju P+Jv]Vv+1[J P+J ] - 0 (4)
J(Y*(v+) ,v+.oa) agrees ;ith J(ut,vta°) to third order

whereby in ;+ when it lies ir. a sufficiently small neighbor-

-1 hood of mo. Equivalently, the discrepancy in costs is
V . _[P'J P+P'J VU +JuvP+JVI P+Jo3 vI (5) of fourth order.

" .%When the objective function J(u,v.a) is affine in
" '")Here Ju and Jv are row vectors of dimensions lxn and owe can obtain more explicit results. Specifically,

lxm, respectively, denoting the partial derivatives let
with respect to the corresponding decision variables. J(u,va) - g(uv) + ah(u,v) (12a)
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where g and h are continuously dif, rentiable in their team-optimal solution for minimiuing J(uiv.a by

arguments, choosing P such that P' transforms the vector hý to
t t (•) .. '

(u( ,v ) 0, (12b) . ".-.
P'hu(ut vt) -h (u ,vt). (18a)

and J is strictly convex in (u,v) for all oChA. Then, u V

(8) reads This same choice of P' transforms g to (-g'): ,

t t t t , t . .,-.hu(u )P + h (u v - 0, (13) P'gut,Vt) - -g (U ,v ). (18b) *.u V V ut' gVU

a solution to which always exists because (12b) becomes
equivalent to (9). Hence vt, as given by (5) [evaluated V. EXTENSION TO THE MULTIPARAMETER CASE , • "."*
at a-a0 ] is zero. This, in turn, implies through an
iterative verification that the vector dnv+(a+)/da+n, In the previous sections, we have restricted our
where v+(a+) is given by (lib), vanishes at cz+=-aO, for discussion to the case aEACR. When ACRr, the first- 0

all n- 1.2,..., simply bccause the second term in (4) order sensitivity function 11(a
0 ) becomes a (1xr)

vector given by
J P +J. -h (uv)P + h (u,v)u my i !(a0 = dJ(u .v+,aO)/d+

is not explicitly dependent on a. Since the nth ordera + -(.
sensitivity function - (ut,V,°)P+ (ut,v,° (19a) o t o

- (u ,, )1 p+v~tvQ V 1a
In(a0) d nJ(u+,v+ ,aO)/da+ (14) a

+ o+a whs re . .
-a

i+ +)/d +vt - P+P'J__+J P+J -I[ JP+J (19b)
carries only (d v (a )da o i1,2,....n as pro- a uu "-. W.- \ (9b

a .. ,- o

duct terms, which are all zero whenever P is chosen to and the arguments are evaluated at u-u, vv, a 0

satisfy (13), it follows that sensit4vity functions of Note that Ii(a°) -0, in view of (6). Furthermore,
all orders vanish, at a+=aO. Hence, vt- 0 (zero matrix) if

Proposition 2: When the objective function is given by J va(utv ,a )CR•J (U V .a))(20)
(12a), under the condition (12b), let P* be any solu- -a

tion of (13). Then, if (Ila) is employed by DM1, the (where R denotes the range) since then it is possible
response of DM2 (i.e., (lib)) is independent of a+, ( do e )ni s
and v+ vt. Hence, J(u+,v+,aO) .J(ut,vt,aO) for all to find an (nxm) matrix P to make the second product

am1 A, that is the overall performance is independent term of (19b) zero. In this case, sensitivity func-
of the perception of DM2 regarding the value of a. 0 tions of orders 1, 2, and 3 vanish at the nominal solu-

tion point; hence, affine policies have very appealing
In the next section we provide a geometric inter- sensitivity properties also in the multiparameter case.

pretation of this appealing feature of the linear When condition (20) is not satisfied, however, one has

policy when the cost function is an affine function of to minimize a suitable norm of the leading sensitivity " .

function with respect to the (nxm) matrix P. This 's,
in general, the second-order sensitivity functions-..

IV. CEOHIETIC INTEPPRETATION OF TOTAL INSENSITIVITY 1 2 (a°) which is an (rxr) nonnegative definite mat-ix. '...
A suitable norm for minimization is, in this case.WHEN THE OBJECTIVE FUNCTIONAL IS Tr{12(a0 ) }. We are now faced with an unconstrained

AFFINE IN A PARAMTER optimization problem on P, for which a closed-form

Let the objective function J be as given by (12a) solution does not in general exist; however, numeri-
with h satisfying condition (12b). Since J is strictly cally it is a feasible problem.
convex, the team solution (ut,vt) when •a-0m is ::. :•.
obtained (uniquely) from When the objective function J is affine in the

parameter vector 04ERr, a total insensitivity result

gu(ut ,Yt) + a
0h (utVt) - 0 (15a) could be established under certain conditions, by a

u u direct extension of the discusaion of Section IV.

gv(U tV t) + h (u tV t) - 0. (15b) Towards this end, let

Postmultiplying (15a) by P, adding this to (15b), and J(u,v,n) - g(u,v) + a'h(u,v) (21)
taking the transpose, we have where g : UxV -R, h : UxV -k', J is strictly convex and

(PIgu+g,) + a°(P'hu+hv2 - 0. (160 continuously differentiable in (u,v). Then, the opti-
mality conditions for a-a° are

Pictorially, the vectors (P'4+g ) and (P'h'+h') are Ot t +Oh v (22a"
oppositely oriented when a0 is a positive scalar. gu( (u ,v)- 0
Clearly, a° is the ratio of the magnitude of the vector -...
(P'g,+ g4) to the magnitude of the vector (P'h. +h). .gv(utVt) + a°o h (u t ,v t) - 0 (22b)
If DMI chooses P such that (13) is satisfied, then the
magnitudes of both vectors become zero. In this case,
if ao is replaced by a# a° in (16), the equation would where hu (respectively. h p) is an rx D (respectively.
still hold, and (ut,vt) satisfies rx") matrix. The optimal response of DM2, under the

policy (1) for DM1, is determined uniquely from (for a
(P'Wg+g) + a(P'hu+h') - 0. (17) general a)

r
Since (17) is the condition used by DM2 to optimize v (P'og v) + Z a (P'h' +h' ) -0 (23)
(see also (2b)), he will choose v -vt, no matter what u i-1 !u iv .

his perceived value of a is. Thus, DM1 achieves the
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where subscript i denotes the i'th component of the where f 1 :R4 .R+.R+ is a continuous function of xio
corresponding vector. Now, let us assume that there and ui, and is strictly increasing in its second argu-
exists an mxn matrix P satisfying simultaneously ment. Here, Xio denotes the initial armament level of

~ ~ DMi..
h u (U ,v )P + hu ,v 0 . 1, (24) In order to obtain some explicit results, let us

nadopt the quadratic objective functional model proposedUnder this fonditionr the second term in (23) vanishes by Simaan and Cruz [Simaan and Cruz (1975a) and Simaan
et v -vt. for all OEAC Rr, and furthermore the first and Cruz (1975b)l, because of its analytical tact-
term also vanishes in view of (s2a)-(22b), by basically ability and other appealtng features in relation with
following the 4rgument of Sectiont IV. Hence, under other existing models; namely, let
this particulsa choice of P, v- v is the unique solu- o r s d ;a ,
tion to (23) far all values of a; that is, the optimal 1 2
response of rM2 is independent of his perception of i • "i)+x )"
the value of a, provided that strict convexity of 3 is and
preserved. To summarize,

Proposition 3: When the objective function is given x i xioUi) x 'iato' i -,2; j~l,2; i@J (28) ; "

by (21), let there exist a solution to (24), to be where
denoted P*. Then, if the policy

o t 0 0 O, 0-c < 1, 1-1.2."""

Y(v) - ut +pe(v-vt) Ri>0, Qi•0, Si, O l "- "
Here, x• denotes the given initial armamenut level of ,

is employed by DMI, the response of DM2 (which is (lib) er deot
DMi and expression (27) reveals the fact that each DMConsequently. J(u+,v+,ao)n J(ut,vo,Uo) for all wants to reduce the gap that exists between his arma- .

•Co e #t rv ment level and a linear function of the other DM's .-
N a4(AC ~r* a armament level, and at the same time wishes to minimize

It n sc wcn.nx l hhis expenditure. We refer to [Simaan and Cruz (1975b)]In the next section we consider an example that for an elaboratedlinterpretation of (27). Under this "--
involves arms race between two nations, which serves for an t eer pretation of (27). in is
to illustrate some of the ideas generated in this and e ui
theprevious sections. Another example from micro- J(x,x 2 fu.,u ) as'a function of oo, which corre-
economics can be found in [Cansever, Bapar, and Cruz sponds to the pair (ut,vt) in the general discussion of(1983)).

Sections It and V S

VI. AN EXAMPLE FROM TIE PROBLEM OF ARMAMENT As it may beithe case, one of the DM's, say DM2,
LIMITATION AND CONTROL may deviate from ut. The reason behind such a move

may be that DM2 totally ignores the cooperation, and
In -heir papers on armament race and control minimizes his own'objective functional. Assuming that

(Simaan.and Cruz (1975a) and Simaan and Cruz (1975b)], each ')M can monitor the decisions of his adversary,S •'" Simsan and Cruz have modeled the arms• race problem as this situation would immediately give rise to a Nash .

a noncooperative differential game between two nations. equilibrium with high armament expenditures. Since we
A salient feature of this model is that, when the have assumed that!each DM desires to reduce his expen-
respective cost functionals are taken to be quadratic ditures while maihtaining a certain balance of powers,
in the decision variables, t':e resulting optimal state such a unilateralland large deviation will be unlikely.
trajectory yields a discretized version of the armament in its stead, we kill assume that DM2 may have an
model proposed earlier by Richardson (Richardson (1960)]. incentive to perform a relatively small deviation from
We will consider here the case when the two nations, DMI the Pareto equilibrium point, being motivated by one of
ari DM2, have agreed to reduce their respective armament the following three considerations:
"expjhditures. Such a situation inevitably requires the
presence of an element of cooperation between DMI and i) DM2 may decide to promote his relative impor-
DM2, 'since any significant departure from the armament tance in the agreement, which is reflected by an
ievel jointly agreed upon may eventually lead to the increase in the value of a from a° to a+, without
original high armament expenditure. Towards the formu- informing DMI, while DMI still uses the value *° in
lation of this problem, let us assume that the goals his objective functional;
of the DM's can be represented by two objective f'lnc-

* tionals Ji(xl-x 2 ,ulu 2 ), 1-1,2, wherein DMi aims to ii) DM2 may develop a different perception of the
optimize Ji. In order to incorporate the cooperation values of one or moee coefficients in the team objec-

'element discussed above, we will adopt the Pareto tive functional without informing DMI. Let us assume,
optimal equilibrium concept, which will be realized for instance, that DM2 has decided to place higher
(Schmitendorf and Leitmann (1974)] if the DM's Jointly priority and emphasis on reducing the gap between his

- "optimize armament level and the linear functional of DMI's arma-

* ment level than on minimizing his expenditure; more
J(xlx 2 ,U1 ,U2 ) t1J (x 1 ,X 2 ,U1 ,u 2 ) +k 2 J2 (x1 ,x 2 ,ulU 2 ) precisely, that he has decided to increase the value

S(25) of from to

where ki S #; uCR+, and uFR+ denote DM1 and DM2's?) iii) Both i) and ii) may be present.
armament investments, respectivcly, and xi represents We now analyze these three cases separately.
the armament level of DMi, i-1,2, which further

satisfies "Case (M). This is similar to the analysis of Section
IV. The opLimal strategy for DM1, which leads to

xi = f (XioU ) i = 1,2 (26) (ut,ut) as final outcome, independent of poasible

deviations in DV2's perception of a0 , is given by
2) R+ deno '- the positive real line.
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(i) t (i) (29) of his subord4
nates. There is an underlying goal, or

I (u 2 ) u1 +P (u2 -u2  objective, which involves a successful completion of
where a mission o- task (such as multi-object trucking and

fire control', and th's goal is determiend by the DM's
S t t at the top of the hierar'hy in rather general terms

p(i) S2 Q218 2 x2 0 '"1-S 2 (1 x 1o+ul)-v 2 )] (i.e.. ,Lot in fine detail), which is then transmittedt ( t tw) Q ( ut- a x ) v( 0 to the relevant DM's at the lower levels.
R2 (2-w2)+2 (2x20u2"S2 1•l 10+Ul)-V2)

Hence, in a general framework, a C
3 

system

Case (ii). The solution here again follows from the involves a team of DM's who act in an uncertain
envi-onment, and who have limitations on control andanalysis of Section IV. Hence, there exists an optimum cnicon ap ab e i ow cally,

insensitivity strategy realizing the team solution communication capabilities. However, realistically,

independent of D1H2's different perceptions of Q2. and this is not strictly a team problem, because, in an
uncertain environment, it is unlikely that every DMwill develop precisely the same percention of the

( ( '31) ultimate goal in every fine detail. In fact, in order
1i (u 2) u1+ B u2 -u2 . to model C3 

systems as team problems, it is absolutely2 1 necessary that all DM's have exactly the same percep-

Case (i`ii). This case involves mu
7 

tiparameters where tion of an existing cormon goal and quantify this
condition (20) is not satisfied. Hence, within the perception in exactly the same way. Any discrepancy

class of affine policies, there does not exist any that exists between the perceptions of the DM's on the
underlying common goal will laad to a decision problemelement which makes the cost of DM1 completely insen- which cannot be treated as a team problem, and optimal

sitive to discrepancies in DM2's perceptions in morethn nepaantr. Inorertooerom tisdi- decision rules derived by totally ignoring (or over- • 0than one parameter. In order to overcome this dif- looking) this aspect of the problem are apt to lead •."--\
ficuity, we adopt, as discussed in Section V, the
scalarized sensitivity function Tr{12 (n°,Q•)1, and to outcomes which are extremely sensitive even to smallvariations in the perceptions with regard to real
minimize it subject to the constraint that the stra- vaderitions i the p mrceptions wThe rardtor real
tegy of DMI is given by underlying goals of the mission. The approach devel-

oped in this paper remedies this deficiency because it
(iii) t (iii) t takes into account the possibility th.,t the DMs' per-

=1 (u2) 1 +P (u 2 -u 2 . (32) ceptions of the "team goal" may deviat, from the
nominal set by the highest level decision making unit. S

This problem can be shown to admit a unique solution Two possible extensions of the general approac. .
which can oe obtained explicitly. Hence, when D11 is of this paper are to dnamic multi-stage decision a

uncertain about DM2's perception of both a and of "i paper a

there sti~l exists an affine strategy which minimizes prublems and to stochastic team problems. In the
an appropriate scalar function representing the sensi- latter case a natural source of discrepancy is the
tivity of DMI's incurred colt with respect to devia- a priori statistical information which is normally

assumed to be shared by the DM's. A recent referencetions in these coefficients from their nominal values, (Bagar (1983)] addresses the quettiva of existence of
and such a strategy is given by (32). suitable equilibrium solutions for such problems when

In the preceding analysis, P(i) is the same coef- there is discrepancy in the subjective probability

ficient as DM1 would have used in his strategy in a measures characterizing the probability space.
Stackelberg game 4ith DM2 being the follower and DM1 Derivatior of minimum sensitivity incentive policies ". ..

enforcing the point (ul,4u). On the other hand, in in this context is currently under study. . - "
case (i.i), by announcing a strategy of the form (31),
DM1 makes DM2's objective functional independent of REFERENCES
the uncertain coefficient Q2. Therefore, DM2's dis-
crepancies do not affect the team solution anymore. Bagar. T. (1983). Decision problems with multiple
However, when the number of uncertain coefficients is probabilistic models. Proc. American Control
large as compared with the dimension of DMs' decision Conf., San Francisco, CA. pp. )091-1096.
vectors, there still exists a compromise, which is to
minimize the cumulative effect of variations of uncer- Cansever, D. H. and T. Bagar (1982). A minimum sensi-
t in parameters around their nominal values: tivity approach to incentive design problems.
vii )(u 2 ) is designed to perform such a compromise. Proc 21st IEEE Conf. on Decision and Control,.-

Orlando, FL, pp. 158-163.
VII. CONCLUDING REMARKS

Cansever, D. H., T. Balar, and J.-B. Cruz, Jr. (1983).
In this paper we have introduced the notion of Robustness of incentive policies in team problems

optimum minimum sensitivity incentive policies in team with discrepancies in goal perceptions. Proc.
decision problems wherein one member of the team has a 4th IFAC/IFORS Conf. on the Modelling and Control
somewhat different perception of the common goal than of National Economies, Washington, D.C., pp. 275-
Lhe other one, and ui have derived explicit incentive 280.
policies which rend4.r the incurred value of the team
objective functional least iensitive to, and in some Ho, Y. C., P. H. Luh, and G. J. Olsder (1982). A
cases even independent of, the discrepancies described control theoretic view on incentives. Automatica,
above. Vol. 18, No. 2, pp. 167-180.

One field where this ndtion finds application is Marschak, J. and R. Radner (1972). Economic Theory- of
.;he military Command, Control, and Communications (C

3
) Teams, Yale University Press, New Haven, CT.

systems area. Here, there exist multiple decision
makers (DM's) and multiple hierarchies in decision Rich-rdson, L. F. (1960). Arms and Insecurity. The -
making, and the role of each.DM is not only to issue Boxwood Press, Chicago, IL. ,." //
orders to be executed by the DM's occupying t0e lower
levels of hierarchy, but also to coordinate the actions /
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DYNAMIC, HIERARCHICAL DECIZION PROBLEMS'

Peter B. Luh* Taikang Ning* Tsu-Shuan Chang"
4  

,

Abstract t. hierarchical decision problem with one
leader and a continjum of followers i' investigated. into account the follower's reactions, to minimize his
The problem is formulb.. ý as a stochastic Stackelberg cost. Mathematically, this implies the presenue of

g-me with nonnested information structure, and studied composite functions in the lader's optimization
by using the Inducible Region concept. For the problem (as will become clear in subsection 2.2). Any
single-stage case, weý-ahow that the inducible region direct solution to such a problem seems almost

can be delineated, and the cptimal Stackelberg impossible, except for special cases. Mosz of the
strategy can be constructed. These results are then recent advances are due to the di_-e,verir- of two

extended to the two-stage case. Although the problem ind'.rect approaches, the team Soluti. .pproach

is formulated in a pricing context in terms of (<BAS79, B1>, <TOL81a>, <HO82>. <ZK82>), and the
companies and customers, the Irmulation can be Inducible Region approach t•<A•82a,82b,83>,
interpreted differently to model Orelated problems.,-- WIH83,80, <TOL81b,83>).

In this paper, we use the inducible region concept

"1 Introduction to study a class of Stackelberg gmes, where there is *, S .
n u -, I 'd r one leader and a continuum of followers. Our Purpose

1.1 Motivation . " v- is not to fodel and solve a realistic, or even

Tne leader-follcwer type of problems, also known as simplified C problem. Rather, we shall adopt a very

the Stackelberg gares, deal with wulti-pweson basic model to study hierarchical decisionmaking, and

hierarcical decision problems. Iecision makers in demonstrate how it can be solved. For some reasons,

such a problem belong to different leveils of a the problem is formulated in a pricing context in
hierarchy and have asymmetric roles. A higier level terms of companies and customers. It should be noted,

decision maker (a leader) has the authority to htwever, that the fN rmulation can be interpreted O
announce his strategy and impose it on the decision differently to model C related problems.
makers under him (the followers). The foliower:, ""..-
knowing the leader's strategy, are assumed to react 1.2 The Pricing Problem and Outline of the Paper
rationally to minimize their own cost funetion3. The Consider a pricing problem in which a company sells
leader's objective i.a then to design 'xs strategy, by a certain kind of product to its customers. The
taking into account the followers' reactions, to company has to design its prIcing acheae,, and make it
minimize his cost. Since out society is essentially known to the customers. Knowing the prlcing scheme,
hierarchical in structure, there exist ample instances each customer then decides the Wount to purchase. 0
which can be modeled by such a framework. Among them Therefore the problem can be viewed as a Stackelberg
are resource allocation, orgaxzatioto theory, pricing rene, with *he Company as the leader and customers aS
problems, anj military command, control and followers. One way to model a large number of

communiction (C ) systems, customers is by meani of a histogram based on a key
As an example, consider the problem of platform parameter such as customer's valuation of the product.

positioning in a naval battle group. Ships in a naval After normalization, the hi1tr3ra% can be thought of
battle group have various levels of defensive as a probability density function. With the customer
capability against emeny's aJr, surface and subsurface population being so described, we have a -stochastic
threats. The overall defensive effectiveness of the problem. If price differential is not allowed, the
battle group depends not only on the capatilities of company can not observe and make use of customers*
its member ships, but also on the positioning of all private information (individual's valuation of the
the ships <CAS82>. In one of the doctrines, the ships product). We therefo. e end up with a non-nested
are partitioned into subgroups for different defensive stochastic Stackelberg Game. This model can also be
functions, such as antiair and antisubmarine. Each interpreted as though there is a single follower who
subgroup has a function commander who is required to possesses some private information not known to the
position his ships to maximize his functional leader. Problems of this class have been treated to
defensive effectiveness. The overall defensive some extent by economists, e.g.,<WEIT'>,<SPE77>.
effectiveness is then determined by these functional There is no existing results in the control or game
measures. The allocation of the ships to subgroups by literature.
the top commander, the coordination and ompetition of In Section 2, we study a singIle-stge pricing
the function commanders to maximize their own or the problem. The model is formulated in subsection 2.1.
group performance, can be described as a hierarchical In subsection 2.2, we define the inducible region for
decisinn problem, such a stochastic game. We then In subsection 2.3 go

As mentioned, the leader's major task in such a through a sequence of steps to delineate the Inducible
problem is the design of his strategy, by taking reglon, and provide a systematic way to solve such a

problem.
In Section 3, we study a two-stage pricing problem

where a company sells a product to a continuum of
0 The research work reported here was supported in customers during two consecutive time periods. The
part by the National Science Foundation under Grant dynamic information involved, and the
ECS 8105984, Grant ECS 8210673, and by the Air Force substitution/complement effects (to be defined in
Office of Scientific Research under Grant 80-0098. subsection 3.2) of the product at different time "
+ Department of Electrical Engineerifg"and Computer periods make the problem more complicated. .. a.t n.he. ... ... - -_
Science, University of Connecticut, Storrs, CT 06268. formulation is given in subsection 3..1. In subsection .. .
4+ Department of Electrical Engineering, SUNY at Stony 3.2, we characterize thr customers' reactions to a
Brook, Stony Brook, Ny 117.T. given pricing scheme.
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The inducible region for the complementary case Is Stackelberg game. The information structure is non-
then delineated in subsection 3.3, where we also show nested, since each follower knows his own parameter z, e.. -
how to find optimal consumption curves, and optimal but the leader can not observe and make use of it.
incentive pricing schemes. The substitutt.on case Is The model, depending on the functional form of Lo, can
investigated in subsection 3.4. Concluding remarks also be interpreted as though there is a single
and comparison to Spence's work are given in Section follower who possesses some private information z not
4. known to the leader.

2S Prc inbeg Gam bems r o-etd Sohs 2.2 Inducible Regtion for Stochastic Games
_tacklber _ Games Problem (P-1) is generally an intractable problem

due too the presence of the composite function
2.1 Probiem Formulation r (u W(z)), and the non-nested information structure.

Consider a pricing problem where there is a company Ig this section, we shall define the Induc0le Regin
(leader, ENO) that se!la a product to a continuum of for this stochastic problem, and use it to solve the
customers (followers). The customers are indexed by a pri.ing problem.
parameter z, indicating individuals' valuation of For a given r., each follower solves (2.1.2) to
goods. Assume that ze Z z [zC, ZM 1. and is described ob0ain u°(z). Thie mapping from Z to U generated by
by a probability density function P (z) known to the u a(z) i• denoted as r . We then say tt hat the r is
leader. A customer with parameter z is denoted as induced by this r(, anA Crnr ) is an inducible

4z1 . Let r denote the company's pricing sceme. If If strategies. FAr a diferent ENO's s tegy, the
DIN¶ purchas 2

s u.1 (0) units of the product, he has to followers' reactions will be changed accordingly, and
payZro(uI) dollars. The social gain can be represented we have another :-.ducible pair ct strategies. The
as Inducible Region in the Strategy Space, IS, is tiuen

defined as the collection of all the inducible pairs
J (u11 z) Z S(u 1 ,z) - r (u1 ) 211 of strategies, I~e.,

The function S(u 1 ,Z) is CH1 's satisfaction in dollar IRS x 1(ro,rI): (r 0 ,rI) is an Inducible pair of
value by purchasing u1 units of the product. We stfategies).
assume that S is twice differentiable with S u , (2.2.1)
so that a cu3tomer with higher valuation of goo6s h8s
higher marginal satisfaction at every level of u 1 . Since my realizable strategy pair must belong to IRS,
The function r (u ) is as3umed to be twice (P-1) is equivalent to the following problem:
differentiable fo J > 0. For a given ro, Iz" ".
decides an optimal u 1 to-maximize J1, i.e., (P-2) max E I Lo(rorlz) ).

max I S(u1 ,z) - r0 1 (U subject to u, >0. C 0 r) R 222
u1 -- (2.1.2) In (P-2), there is no composite function. However,

IRS is a set Of pairs Of functions and is hard to be
The solution of (2.1.2) is denoted as uIC(Z). It delineated. Furthermore, even if IRS can be
represents CI 'as "reaction" to the $ivan r . The calintated, it is still not easy to perform the r----,
price he has t

o pay for it is u r C(u a(zF). For maximization, since it involves r and r at the same
simplicity, we assume that uAO(z? exists and is time. Motivated by results o0 f eterministic
unique. If u 1

0
(z) is not unique, 040 has to assuMe Stankelberg games, we shall next find IRS's 1"3

the worst case in his strategy des3gnind stage. This counterpart In the decision -pace.
complicates the derivation, yet adds very little Consider a pair (rn--.) c IRS. -M12t decision is
understanding to the problem. given by u r r (6). The corresponding u is1"3•__

The ompany's paoff function is described by determined b ru; z) z r (rlW) : fn , W
is defined as te Capom ;te' unotion f r0 and re hC..

nor0  r 1 haz maps Z into UO. The pair (u 2fo(z),u 1 -r Wz)) can be
J 0z'L(r (u ),u (z),:)P,(z))dz. regarded as the outcane oo il0fr this ro. For a

M follower with parameter z', thecoorrespondin outcome
is given by (fo(z'),r 1 (z')). Thus across the

0L ). (2. 1.3) population, th~e outcomes are described by the pair of
functions (fr 1 ). We then define IRD, inducible

_ Jn can be the profit, a social welfare function, or region in the decision space, as
a;y meaningful function from the company's viewpoint. -

For the moment, however, we shall not specify 1. MD a {(fOr I (rnorI)IIRSs.t.
explicitly. Knowing the density function P (z) ans 0Cf)a ro0r(rI)) . z CZ I.RS-st
followers' rationale in reaction ((2.1.2)), 9O wants (2.2.3)
to select a strategy r 0 from some admissible set r to It is clear that (P-2) Is equivalent to the following
maximize . In other words, M4O solves the following optimization problem:
problem: 0

(P-3) max E ( Ln(fn,rl,z) 7,
(P-I) max E (LC(rO(ul),ul(Z),z)) subject to (2.1.2). (f,,r ) EIRD 0 (2.2.4)

ro C• 00O (2.1.4•) where appropriate sUbstiýutions of r0 by fn in L0 we we

The decision sequence is summarized as follows. astuned. For deterministic problems, IRD sa s;bset
in the decision space(<CF482bh,(LUH83,8I>). For our V

PZ(Z) r 0 (.) u rO (u) problem, however, due to the presence of a continu. .
--r-O- ....0 of customers, IRD remains to be a set of pairs of .

uI0 (z) functions.
D40' Prior I
"Information Design Stage I Execution Stage 2.3 The Inducible -on Approach 213.1 Customers$

Fig. 2. 1 First and Second Order Necessary Conditions
In order to delineate IRD and solve the problem, we

ProAmGI (P-1) is a single-stage, stochastic shell first examine a customer's reaction to a pricingwe
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eme. For a given ro, a customer has to decide •:,
ther to buy the product or not. Assume r (0) 0, 0I

a customer pays nothing if he does na buy it. t 1 (r 1  (ult),u,')du, + C2 1 ro nothing he=does ,),buy- .1u
(2.3.2.3)

where C and C are constants to be determined.
4.10) > I(Ul,z) - ro(U I)} %L U1 > 0, Furthermjre, one r 0 that induces the r 1 is(2.3.1.1) 0 1

customer will not purchase any of the product,
.,u a 0. Let z be the value of Z such that u1 - rO(u ) ( (r -1 (u1 ),U1') u1' .Cfor IQ d.Tu, zdcan be thought of a3 the 0 1)1i) dul' C 2"

Itry" Wonr. Due ta limit on page size, proofs for Theorem 2. 1 and
0mider 2 customer with z > zd. The first order remaining theorems are not included here. For their
.zsaey condition of (2.1.2) iS proofs, pleaS.e see <NIN83>,

dJW/du 1 : 0, or 2.3.2 Solution Method

S a dro/du 1 . (2.3. 1.2) Theorem 2.1 is very ,iseful since it says that for
a dr Idu.. (.3-12) my r cSR, its corresponding foe as well as rot can

be coLstructed within the limit of a constant. Thus
s soltio will~ lead toreondn the fucto rel W. rThen.. .•

solution will lead to the fnction r 1 (z). The the optimizatien of J in (P-3) wi.h respect to (f
ond order necessary condition is r 1 ) over the set IRD cow essentially be reduced to tKe
d2 J1 /dul 2 , (S d2ro/dul2) <oimization of J0 with respect to r over the set SR.

d r _ Odu (2.3.1I. 3) The constant terg in f is relese to 2 , and can

generally be resolved geparately. -We thus have aTo get more expl icit result, we take 1o a re u e ver io of ( -) as f l O 3

-1vative on both sides of (2.3.1.2) with resp.ct to reduced version of (P-3) as follows:
We have (P-4) max E (Lo0(r 1,z) },

(S,,,,) drld 1 S - (d 2 ro/du 2 ) dr/dz or r1 £SR (2.3.3.1)

2 2 , 2 where appropriate substitutions of fO by (2.3.2.7) or
1 " (d rO/dU ) } dr 1/dz : " z (2"3"1"5) (2.3.2.9) are assumed. Note that (P-4) is a

e Sz > 0 by assumption, the right hand side of maximization of J with respect to a single function -\
ce S no byaser tion. • t heorighnet han si( e of• r 1 over the set 9R, rather than a maximization with

.3.d?. is not zero. Therefore, neither ( S respect to two functions as in (P-3). The next theorem
r )d nor dr/zi eo qain(2-''u!3"• 1
m~lies drhat z is zero. Equation ~1 then delineates SR.

Theorem 2.2: ¶h.he Set of Reaction SR is given by
A 1/di12 A'l/dr /dz) ) < 0. and

d
2  < , and (23.15) SR a ( r 1 : dr 1 /dz > 0 for a > zd, and r 1 (z) 0S(.31.)for z < zd' zdC [me zH M) •

dr /dz > 0. (2.3.1.6) (2.3.3.2)

thus have Problem (P.-4) can be rewritten 4s follows:

sna 2.1: The customers' reactions r (Z) is a (P8') max E (Lo(r 1 ,z)} s.t. dr 1 /dz > 0 for Z>Zd 1a
riotly Increasing function of z for z > 0(i.e, a rl r 1 (z)zO for z<Zd z e ] dz d m-M
stoner with higher valuation bu,ýs more goods). (2.3.3.3)
so, (2.3.1.2) and (2.3.1.5) constitute a set, of It is an "optimal control like" problem with an
•t~otent conditions for customers with z > zd

incenrl) conditions tt nrs for ctomeswith > Zd inequality constraint. Although its solution is
,verse mapping exists, denoted as zfrI "(u) Thus nontrivial and subject to further investigation,

s nevertheless, we have . converted the original
.though the company can not observe directly a
istomer's private information z, however, by knowing Intracpable problem (P-1) to the somparatively much le' ~simpler problem (P-4), where its solution, or at least - ''

.s decision u , the company can indirectly figure it £ -solution, is promising. Once (P-4) is solved,
it. This point, As a result of the assumption that its result r is then the best inducible r . The
y > 0, turno ouC to be crucial in our design of the optimal pricing strategy can then be constructed
-pany's pricing scheme, according to (2.3.2.8). For ccapleteness, the entire

.•.2 Construction of the Composite Function f_ inducibl,, region IRD is presented as follows.

Define the Set of Reactions, SR, as the collection Theorem 2.3" IRD is delineated by

r all inducible reactions, i.e., IRD { (fOr ): r CSR, and fn is given by (2.3.2.7)

SR z ( r 1 :3r 0  s.t. (ro,rI) cIRS }, or or (2.3.2.9) 1.

I r 1 :Jf 0 s.t. (fOr 1 ) ctRD 1. T Two-Stage Pricing Problems

(2.3.2.1) 3.1 Problem Formulation

In this section, we extend the model and the
a have the following result. Inducible-Region approach of Section 2 to study a two-

heorem 2.1: For any r tSR, its corresponding f cm stage pricing problem, where a company sells a product

Sonstructed within the limit of a constant erm, to a continuum of customers at two consecutive time

nd Is given by periods. In many situations, on.e a customer decides
to enter a market, he has to pay an entrance :ee

O (rZ) ~ a - ((~S/3z~dzregardless his consumption level. For Instance, a
1' . - C1 , (2.3.2.2) telephone company charges a basic service fee to a

customer In the monthly bill even though he did not
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47
use the telephone for the entire month, We sall± Knowing the customers' rationale((3. 1.4)), the

*therefore assume company then designs r01  r~ and A to maximize his
payoff J0 where 0,10

~ r1 e r0  .A for commeitted tustomer,

r0  otherwise 30 0 r 1 r 2 r0 . 0 )1 318
(3no ) ht is, the company solVes the following optimization

wher r 01 denote the company's pricing strategy at problem: .1
stage i. and A the entrance fee. Let u1 (z) denote
the mnount of the product purchased by ON I at stage I (P-i) am i 3 siJ4et to (3.1.4).
(1:1,2). Ales, let y1 denote the on-line uncertainty r01 r0  A
at stage I such as 'Wether that affect customers' Ol0

satisfaction ab well as the oeupanys3 payoff. It is The problem is thus a two-stage, stochastic --

described by the probability density functions Stackelberg game. Similar to the single-stage pricing
P (y ). For simplicity, we assume that y , y and z problem of Section 2, the Information structure is

;Aim~ually independent. Finally, similar to %action non-nested since the company can not obzerve cid make
2. we let r I denote the Consumption curve at Stage i. use of the Informav~ion z. We shall ne.:t Solve tIA3
The sequenal of actions is stummarized In Fig. 3. 1. In problem by extending the Inducible rE44on approach of
this figue and g denote, respeMCtively, the Section 2.
Information avaffable toZbwe company and ENi at stage
1, and we given by ~2~atoso utmr

-For simplicitye we shall assumie that once a
g : (z, Y,; r 0 1, r 02 ), customer decides to enter the market, he will purc.hase

up (y1, u.,), the product at both periods (i.e., U1  0 and i >
Up2 Y 1.Y1 rol 0 2 0). These customers solve a twe-stage dynL~ic

gpZ ( 11 ;2 ( U2)* optimization problem. i.e.,

(3.13..2)
maex E U d(r te th r dto of (32. For

saisacio 1 shl fis exrn neesr12nioso (3- 2.1)
rcia gain is hav unqu los To,* bete Y haracterize p

given by cutmaxePIrs reacions fo0r 0 a' give 1 ron schme)w
jujr5( z I~~1 y, 1 , 1 )r 0 yu)r,( 1 2 u 2 -A U (32.) The firs and seon ore2ncssr

whr r~13 conitins of e (32.h)ae asfoluton f 32.1. o
We a lseatha S. ar twic diffepresntial fOrII Ipi1 e93N htbt 321 n 322

saiihome o wIth dol~r zi; handulithe 3,, gmin hv uiugsltin. obttrchrctrz
saifci onn for everyers leeleaprcaectbohionsdi 1

2  for a1 gie 0. cn chmw
stages Wers alamio necsssae fonitrn ofict that2.1)

13.13) cnditons f (32. 1 we(3.2olo3)
For as gvnsrcngshme that, r 0  andA) S ar wc*ifeetal o

customers deideth geir opia conuaio str ategies 12 2
syaxtisfciog for iver, level efpuchseatboh/3u1 1d 2  < 0 for u >02 (3.2..

Staxes WO 010 831 fur Noteit that thr isniodtoasepcaini h
coninou at1 (3 1.4 abv equaion vance atr the seon peo 1gor

customersbecthe payoff oftiml2 if he does no enterathge codton1o23..)

.1 K S~~yy., 1 1 , u 2 0 ~ (.1.) (E (J )/au11  ) 0 for u1  > 0. (3.2.6)

unerait atiiza stg 2.. Fro (3.5 m2 (323,w

~ K ( -a r 1,9u 1 *( ~ -302 12 12 )d 1 /u 1

rwIIIth u12 0ed 0 (3.1.4) abov euaton sic 12th eod eid

entere the may ket if F I he does for enmer theŽ codtin fo(u r 01 3 0 (3.2.7) w
0akt iue. d( 0. Le I denot the e poit. ianerfod (3.2.5)beos

a315 cutoe w(t ( >d wil ene the mUkt For3..6

Asimplicty of beiscespaoff we EN I sIt he in*r this Y2 (.28
saretion .that OZOt~n ar zae ove The iince th ona-lzdiSnee

and2d re ~laei bythefolownuncertao :inary cat Saexp ro 3..)and (3.2.6), tctai
)-r u11u11 )- hav2e2 1 Su 2 < 0

S9(S (zY VY2 ,u1 0,u 2 ) r01 (y 1, 1 ) 2 (y,,y 2,u 12 )-) 1 (S 43r Au r 01 1r )d, /d11
withzu 1 ~2 0 and 12 . (3. 1.7) We have1 1 U1 0/uU 1

d u -. ar0 1 0 32T

I - 1



ma 3.1' If (3 S O.i(ru/dz) ) > 0, then result:
/d;- > 0 for zý ,z * .e. r Is a strictly

:reasi.g function of 12 Theorem 3.3: For the ease Where S 1 l 1 2  0 0, the Set
of Reactions SR is given by

ailarly, we have
SR.((r1 9,r r r s -011/dz > 0 and dr 1 2 /dz > 0 for z > zd,

umaa. If E (Su1 S O3r /3z)) > 0, and r11 (z) a r (z) a 0 forz d
an dr /dz > dl r 1 .(z) is a z[ 1Z2
riotly increasing function ofaz. ' (3.3-3)

Lemma 3.1 and Lemma 3.2 are useful since If they Now similar to Section 2, the orig.ial Intractable
1d, then both r1 l and r- are strictly Increasing problem (P-1) is equivalent to
notiý 1ns of z" and "1he ii Inverse mappings
r1 - (u 1 1 ;y 1 ) end z~r1- (u ;y ,y ) exirt. (P-2) max E ( L0 '(r 1 1 ,r 1 2 • },(U I 1v and 2 12 1 ex. .- '.."r 1

nnequent] y, knowing a c 3t2omer's decion ull or SR (3.3.4)
Jo the company can figure out his parameter Z.
Uau- to the single-stage case, this point is ehere appropriate substit'•Stons of r and r0 2  by

umal 11-i designing the caapary's pricing schemes. (3.3.1) and (3.3.2) are assumed. Fk hersore# zd.
fu.ly u.tlize Lemma 3.1 and L'~mma 3.2, we have to rather than A, is treated as an independent perameter

mine the conditions under which they are satl.siied. to be optimized. Consequently, the rweaining problem
shall first characterize the term 3r1 2 /3z in Lemma can be solved by going through the follodIng steps:

2.
(1) find necessary conditions 'for rI and r by

,ma 3 :r > 0, then ar 1 2 /az > 0 for z > Zd. solving an optimal control like prtbl- at each
12 period,

lote that the• term S appears In both Lemma (2) find necessary conditions for z
I and Lemma 3., We V next consider the case •3) solve cotditions derived from (1) end (2)

lore simultaneously or sequentially, and .".
(4) construct the optimal incentive pricing schemes

u > 0, (3.2.19) according to (3.3.1), (.3.2) and 031.7).

a., a customer's marginal aotijfaction aý one stage Finally, for completeneas, we hay y
I enhanced as the purchased maumt at the other stage
Sincreased. In other words, the product at Theorcm 3.4: For goods with complement ef.'ect, IRS is
Lfferent time periods have compler-ant effect. The delineated by
ther sitl'atin when the substitution effect exists,
.e., S < 0, will be discussed in Section 3.14. IRS a ): (a r., )c.q ,;r

can Velu.1ily checked that if Sul1u12 ) 0, then are given by (. 1.7), '13..1) and (C.32 ""u( .3.21,

troe 3- > 0 end & 12 > 0 by assumption, the respectively)._--
3ndi-•d.ois "of Lemma ••l and Lemma 3.2 hold. We (3.3.5)
herefore have the following result.

3.14 The Case of Substitutive Goods
heorem 3.1: For the two-stage pricing problem as In this ,section, we shall discuss the case where
3rmulated if 31 1 > 0, then r 1 1 and r are the product at different time periods have
trictly increasi9 1lunctions of 7 for z > zd. substitution effect. It can be checked that now theI conditions of Lemma 3.1 and 3.2 migl± not be
4. Inducible Region and Stackelberg Strategies satisfied. 7herefore, the results of the previous

In this subsection, we shall first show by section do not hold in general. We shall Impose
onstructive proof that for any pair (r 1 , ' re ) of appropriate conditions on both the Mat1sfaCtion
trintly increasing functions of Z, there exla a function S and the pricing s.rategies (r 0 1 , r 0 2 ) so3
air of incentive pricing schemes to induce it. We that those condit.ons remain valid.
hen "elineate the entire inlucible region for t.s.
ase ben u > 0. Consider an 3 withu I11u 12 ,"". ._"""."

"heorem 3.2: For any pair of functions (r,. r) q > 0, q > 0,
¶1 Szu aq1 >0 2

ith dr 1 /dz > 0 end dr 1 2 ldz> 0 for z> zd, there ex 3t (.u11 u 2 .. )Spair o incentive pricing schemes (r 0 1 , r 0 2 )E r 01 x 0uU1 3

to induce them. They are given by 1 1 0 (3.4.2)

u 1 1U s.q4 < 0, and 1 <-q .0.
01 1 uIIU 2u1 (3.4- 3) . -. :.,

u1.-y The nszativity of 
5
u I1 12 impliev that the product at11 " -1 -1 ut """3'"'

I (S1(r 1 1  ,ydY 2 U1 1 f,r1 2 (r 1  , 1,y 2 u 1 1
1

))du 1 1  different time periods are substitutes. Equation"
0O2 1 1  (3.-1.3) says that, at each stage. a custower's

(3.3.1) marginal satisfaction decreases as the =,unt of
,nd purchase increases., he then have r.,

U Theorem 3.5: For an 3 satisfying (3.4.1) to (3.14.3),

122 J,12 'Y1,y2 p rl1 (r 12-,Y 1 ),u 12') du 12 %. spoeta

(3.32) 1 5 > (q 2 /q 1 ) q 3 ' and (3.14.)4)(3.3.2). .. .

The required entrance fee A is given by (3.1.7). q4 > (ql/q 2 ).q 3. (3.4.5)

Similar to the single-stage case, we can define Then with affine pricing shemes (rn 1 being affine in
IRS, the Indusibl.? Region in the Strategy Sce, and Ul 1 ), the custoWers' reactions are 2rictly increasing
SR, the Set of eacti-ns. -e T-'n have -e- oowing fuhctions of z.

253

. . ... %

%7



""-...- - 7... "

Intitutively, (3.14.4) and (3.14.5) imply that the <BASBI> Tamer Basar, "Equilibrium Strategies in

substitution effect is weak. To see this, we first Dynamic Games with Molti-Level of Hierarchy,"
assume that ql " q2 " In this case, (3.3.ý) and Automatica, Vol. 17, N).5, 1981, pp. 749-754.

7. (3.14.5) become q < q and q < q . That is, the <CAS82> r.A. Castanon, J.R. Delaney, L.C. Kramer, M.
substitution effe•t (q I is weaier than the decreasing Athans, "A Mathematical Framework for the Study of
in .,argin-al atisret&on within ?ch pe~iod (recall Battle Group Position Deci on.," Proceeding of the
that -q 3 S/au , and -q S//u2 ). If q 1 5th MIT/ONR Workshop on C- systems, Monterey, CA.

] qZ ý3.3.5) and (J!4.5) then-imply that q should be Aug. 1982, pp. 105-110.
weaker than some scaled version of q4 and 2. <CHA82a> Tsu-Shuan Chang, Peter B. Luh, "The

Under the conditions of Theorem 3.5, r 
5  and r Concept of Induwible Region in Stackelberg Games,"

are strictly inareasing functions of z. Althoug the eroceedings of the 1982 American Control

(3.3.1) and (3.3.2) can be applied to obtain certain Conference, Arlington, Virginia, Lne 198&,
pricing finctions, however, these functions might not pp.139-140.

be affire, thus the original assumption might be <CHA82b> T. S. Chang, P. B. Luh, "A Complete Solution
violated, and there might not exist a pair of affine for Two-Person, Single-Stage, Deterministic,

' pricing schemes that induces them. Therefore the Stackelberg Games," Proceedings of the 21st IEEE
result we have here is not as strong as those in the Conference on Decision and Control, Orlando,
complementary case. Florida, December 1982, pp.17"-180.

<CH&83> Tsu-Shuan Chang, Peter B. Luh, "Derivation mf
14 Concluding Remarks Necessary and Sufficient Conditions for Single-

Pricing problems are formulated as stochastic Stage Stackelberg Game via the Inducible Region
Stckelberg game3 with non-nested information Concept," to appear in IEEE Transactions on
structure, and studied by using the Inducible Region Automatic Control, Nov. 1983.
concept. It was thought that such problems were 082> Yi-Chi Ho, Peter B. Luh and G. J. Olsder, "A
extremely difficult to solve, and their inducible Control Theoretic View on Incentives," Automatics,
regions are not clearly definel. However, by Vol. 18, No.2, 4arch 1982, pp. 167-179.
exploiting the special structure of the model under 4.UL83> Peter B. Luh, S. C. Chang, T. 5. Chang,

. consideration, we are able to delineate the complete "Solutions and Properties of Multi-Stage Stackelberg
inducible region for the single-stage pricing problem. Games," to appear in Automatics.
The optimal inducible consumption curve oai then be <L1J481> P. B. Lah, T. S. Chang, Taikang Ning, "Three-
ott ained by solving an optimal control like problem, level Hierarchical Decision Problems," To appear in

7-77 The corresponding optimal pricing scheme can elso be IEEE Transactions on Automatic Control, April 1984.
co0,structed. <NI83"> Taikang Ning, Master Thesis, Department of

* Spence studied single-stage pricing problems in Electrical Engineering and Computer Science, The
<SPE77>. There is certain mathematical resemblance University of Connecticut, 1983.

* between his results and the results presented in <SPE77> M. Spence, "Nonlinear Prices and WeNfare,"
Section 2. Some of our ideas are indeed motivated by Journal of Public Ezonomics, Vol. 8, 1977, pp. 1-18.
his work. In <SPE7'1>, he first substitutes out all <TOL81a> B. Tolwinskl, "Cloade-Loop Stackelberg

Sthe r 's by (2.3.2.2), and then maximizes J over the Solution to Multi-Stage 'Unear-4uadratic Game,"
unresericted set of all the r 1'3. Ch the oeher hand, Journal of Optimization Theory and jplication, Vol.
in the inducible region approach, we first substitute 34, No. 4, August 1981, pp. 485-501.
out rO 's by (Z.3.2.2) or (2.3.2.3) (they are shown to <TOUL81U B. Tolwinski, "Equilibrium Solutions for

* b equal). n.atead of directly maximizing J over the a Class of Hierarchical Games," in Applications
unrestricted set of all the r '3, we delineae tihe set of Systems Theory t" Economics, Mangement and
of all the customers' reactibro• (SR). We ten find Technology, J. Qitenbaum and M. Riezgodka, Eds.-
the optimal inducible reaction by maximizing J over Warsaw, PWN, 1981, .pp 581-600.
SR. Once r1 is found, r 3 can then be constructed <TEL83> B. Tolwinski, "A Stackelberg Solution
from (2.3.2.14). Thus uslng the inducible region of Dynamic Games," IEEE Transactions on Automatic
approach, we guarantee the solution obtained from Control, Vol. 28, No. 1, Jan. 1983. pp. 85-93.
(P-4) in inducible, however, this is not generally <WII74> M. L. Weitzman, "Prices vs. Qiantlties," The
true by using Spence's method. For problems treated Review of Economic Studies, Vol. 41, No. 128, U-.t..
in <SPE77>, his solutions happened to be in SR, thus 1974, pp. 477-491.
he was able to get the results. For general problems, <ZHE82> Y. P. Zheng, T. Basar, "Existence and
this will not be the case. We then have ýo rely on Derivation of Optimal Affine Incentive Schemes for
the inducible region concept. StackelLarg Games with Partial Information: A

.- For the two-stage prIcing problem of Section 3, the Geometric Approach-, International J. of Control,
dynamic information involved makes it more complicated Vol. 35, No. 6, 1982, pp. 997-1011.
than the single-stage problem, and the
complement /substitution effect of the product at two
different periods begins to emerge. If the product at
different periods have complement effect, we delineate
"the entire Inducible Region. The desired consumption
curves can be found by solving an optimal control like

problem at each period, and the optimal pricing
*trategies can then be constructed. Ot the other
hand, if the product has "weak" substitution effect,

\, we show that the optimal affine pricing schemes can
sc-metimes be constructed.

Appendix

<BAS79> Tamer Basar, Hassan Selbuz, "Closed-Loop
7 . Stackelberg Strategies with Application in the

Optimal Control of Multilevel Systems," IEEE
Transactions on Automatic Control, Vol. AC-24, No.2,t', April 1979, pp. 166-179."
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A13STRACT -

)The problem/to be invcsi igated coosisis of determining destination and the assumption that each timie a message
* the optimal locations of files and the nu inbcr of redundant "nters a node a new length is chosen from the exponential

-p copies or these files, ill a vulnerable 4'communication-T message length distribution. Trhe use or fixed routing is
3 ntstwork. It is assumed that each node and link of wrong since a link or node may not be operational at the

the communication net% ~rk can fail independently of time it is being used.
the others. The optimization problem maximizes the
probability that a commander is able to access the subset The Mahmoud and Riordon problem reducest~o anonlinear
of thec filecs that he needs while minimizing the network- integer programming problem. They used a heuristic
wide costs. These network-wide costs are storage costs and solution technique to solve the problem. The solution
Costs due to the time delay in query and update requests algorithm consisted of first generating a number olffeasible
of the distributed data base system initial solutions; second optimize this solution by successive

aditon or de l,,et,,un of film- copis; thii4 6 .dup,. the* The problem can be shown to reduce to a zero-one linear adtcr *lower cost allocations and repeat step two. Finally whenprogramming problem. We-wi~ look for theorems which additions or deletions cannot further reduce the cost, then
reduce the complexity of the solution of the zero-one linear ti loaini osdrdt ea"oa piu.

*programs. Finally a heuristic algorithm has be developed toahtm h loih roue oa piu ti
solve the zero-one linear program. An efficient rpclynomnial Ec ieteagrtmpoue oa piu ti
time algorithm has been developed for the totally reliable cosdrdaan"ertc i Teeslofheowtcost heuristic run is adopted as the optimal file allocation.
netwoik case. WViwiU try to extend the efficient polynomial Tehuitcapoc sasmn htoeo oeo

timealgritm/otheunreiabe ntwok cse.the local optimal will be close in cost to the actual global
A,;. optimum. Tihe solution must satisfy the availability and

I1 INTRODUCTION time delay constraints..

Finally file allocation in a distributed computer corn-
1.1.Litratre urvy o Wor Doe o Uneliblc munication network with adaptive routing hag. been

1.1eLteratr e recentl pulihe byr Lannie and Unreldi[.3a.The
? have presented an algorithm which minimizes storage and

Unreliable networks are networks in which the nodes or messagy. transmission costs while the file allocations satisfy
links may not be operational at any time due to failures. minimumn file availability and message delay requiremente.
The first researchers to investigate the file allocation The algorithm uses the solution to a p-median problem
problem in an unreliable networks were Mahmnoud and to find an initial candidate file placement. The p-median
Riordlon 11.1]. Mahmoud and Riordon developed a mnodel problem is to allocate files at p locations so as to minimize
in which not only the allocation of files were optimized, all the average. costs. If for example the costs were replaced
but also the optimal captcities of communicaitioni channels by distance then the simple median problem would be '
were determined. The interesting extension with respect place the file in such a way that the average distance from

to previous models was thme definition of availability con- a node to the file was minimized. For a p-median problem
straints measuring the probability of having at least one one would try to place the files in such a way that the
copy of the file accessible as a function of link reliabilities, average distance from a node to a copy of the file was
node reliabilities 4tnd network topology. Mahrnoud and mnmzd
Riordon also used network delay constraints. They devel- Lanning and Leonard used the p-median problem because
oped a model in which not only the allc'cation of files were he requires that the usera place an upperbound on the
optimized but also the optimal capacities or communica- number of file copies say p. Lanning's algorithm first
tion channels wern determined. The delay measured used solves the p median problem for each p up to the
is from 'reinrock's [1.21 book "Stochastic Message flow upperhound P. Second the algorithm examines each of
and Delay". The delay exnression assumes fixed routing, the P solutions to the p-mediant problems and determines-

each node has infinite storage, intermediate nodes incur no if the locations satisfy the availability constraints. If
processing delay as a message travels through it toward its there are any infeasibilities the algorithm employs a set

of rules to eliminate infeasibilities. Third the algorithm
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examines the P solutions with respect to delay constraints, with shorter service times do not have to wait as long as

If there are any infeasibilities the algorithm again employs a first come first serve (FCFS) queue. The requests with

a set of rules to eliminate• the. infeasibilities. Once all longer service times have a slightly longer waiting time

the infeasibil:ties have been resolved the best of the P than FCFS, but it is more than counterbalanced by the

solutions is taken as the optimal solution. Lanning uses reduced waiting times for the requests with shorter service

the same approximate availability measure as Mahmoud times. Therefore in our problem formulation queries have

and Riordon for the availability constraints and uses a higher priorities than do updates since queries have shorter

// " time delay approximation for the time delay constraints. service times.

We also may have priorities due to other factors. These

2. TIME DELAYS IN AN UNRELIABLE NETWORK factors include importance of the commander, the impor-
tance of the file to the commander, the iinvortance of

the file to the multiple sensors. The waiting times due to

2.1. Basic Problem the priorities can be calculated using formulas given by
Kleinrock's [2.11 book entitled "Queueing Systems II".

The problem at hand is a completely unreliable system
with sigrificant time delays. Since. the system is unreliable 2.3. Fixed Routing
we will have unaccessability costs and because the system
has time delays we will also have communication costs. In fixed routing the routing strategy remains fixed once it

Therifore we will have storage, communication and non- is determined. The set of routing variables, *i(k) define

accessibility costs in our objective function. We want the routing that is to be done. 4i,,(k) is the fraction of

to minimize this objective function subject to the fixed traffic emanating out of node i that is destined for node k

capacity constraints. Therefore our formulation for the on link (i,j). these set of routing variables can be found by

Sproblem at hand may be written in thp following form: somie shortest path algorithm subject to link capacities.

M
min Z C(V)O

,~rNF 1L S S1
SminM I €,;-'2j• + Mill XKKk + O'ki - a 'A,3,P11(Il) -- • Z U*,j,,,

'i-1 L- LkEA hE! I El i-=i s=1 ,=a
(2.1)

s.t.

X_>

or, =the importance of commander i
B8, =the value of file j to commander i
AP0=(Ii) -the probability that file I is accessible to the commander

at node i given an assignment 1i

"jI =the volume of query traffic emanating from node j for file I
?1-- =the volume of update traffic emanating from node j for file I

)k =the time delay for an update from node j to node k

fyk =the time delay for a query from node j to node k

.k• =the cost of locating a copy of a file j at. the k t node
S =the number of sensors

%J, h imIup Lanet.U u1" Ile I who.' data i'roii sensors i anrd j are tused
P,,1(11) =the prubability that file I is accessible sensors i and j
given an assignment 1,

-I =the set of node indexes representing a. given assignment of file I J

2.2. Quetiring Discipline
Let 6, be the generation rates of messages at node i, X,- be

,We require the most efficient queueing discipline to reduce the total amount of query traffic emanating out of node i,

time delays. In order to achieve this goal we must allocate and 0,. be the total amount of update traffic emanating

higher priorities to the requests with shorter service times out of node i. We then have the following:
and lower priorities to requests with longer service times.

In this manner the average waiting time per request is
reduced. This is true because the request with longer 6i =Xi- + Oi- (2.2)

service time must always wait iar those requests with

"shorter service time, %iile the requests with shorter service

times do not. wait for requests with longer service times Z • 4'j(k) 1 (2.3)

unless they are already being serviced. In this way requests A
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Therefore if we can determine the muting variables for
Xi. E Xil (2.4) an unreliable network, then we can also determine the

t.1 average message delay for an unreliable netlwork.

oil e (2.5) 4

== £2;. s Vi4(o) (2.10)

Let 1/& be the average message length. Let 0.i be the total
arrival rate of messages at node i. In other words 0.i is the e--.
sum of messages generated at node i and those in transit = 2 1 1 '
through node i. then we have the following relation: TV

Since E)" corresponds to routing variables 4V,3(k), it must,. "
0., = 6, + 0 £ 9.O.;ik) (2.6) be scaled up by a factor ofr ri because the link is only -

operational a fraction irij of the time.

The total arrival rate "of messages to link (ij), denoted by 2.5. Time Delay
O,, is given by;

Let C,, be the capacity of lnk (ii), then the average ..

,i= 0., " 4,-(k) (2.7) message delay on link (ij) is denoted by, ri and is given
k by:

2.4. Variable Routing

Th . .... . t hi, part af.,.. ,.n,'rwu,-n O.,o. must be
changed. In the previous sections we have used fixed .. 7
routing strategies. In this section we must use vatiable 1
routing strategies. The routing must be done in such a Ac, - OIs (2..2)
way to take into account failing links or changes in our
topology of our network. Therefore due to link failures the The average delay, T for messages in the system is:
routing variables are scaled up by the fraction of time they
are operational. This is simple averaging of the routing
variables with respect to the link failure probabilities. T G. - • ,jT,, (2.13)

The problem is now how to change this routing to effect
the reliability of the network. Clearly the fixed routing Where E is the set of all links in the network, and P is
strategy found in the previous paragraph will not do for the total message generation rate given by:
our unreliable network. Therefore somehow these routing
variables must be changed to reflect the reliability. We can N
use the method described by Li [2.2]. Li assumed that given . (2.14)
a routing strategy that if a link failed that the remaining
messages will flow through the other links proportionally.
In this case we can then find new routing variables based The average message delay going from node i to node k is g
on the old routing variables and the probability of link denoted by 7T, and is given by:
failures.

T {( ;r,• + Tt probability O,,(k) ""
(k frk probability *,k(k) (2.15)

In other wirds we can state a recursive equation for the
average message delay from node i to node k as: 0

(k, (2.) *(k)[T, + (2.16)

where ir,i is the probability that link (ij) is reliable and
E is the set of all links in the network. With the I t equation we can determine the average

This approach to redefining the routing variables a=sumes message dela given the routing variables 4,,(k).
that if a link fails the remaining links' traffic will be scaled 2.5.1. Caleul ion of Time Delay.witbout Priorities -
up by the fraction of their operational time.

Let --ij(k) be he total delay of a message sent to node k
From the previous chapter on time delays we round a from node i r uted over link (ij). The total delay is due
recursive equation for the average message delay from to four parts.
node i to node k as:

1. TAl-=the time delay from node ito node k routed
over some set of paths

T l= £ +,(2)2. wi=fthe time delay due to queueing or the

waiting time at node k before being processed
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: 3. jk-=the time delay due to the service time files differently. Therefore the importance of commanders
4. Tk=mthe time delay from node k to node i routed and importance of flls to commanders can be combined

4.ovt~er time delfayh from nodeirkatio node iotedinto one general level of importance. Combining this with
over some set of paths for confirmation. the importance of files to sensors given a list of 2L +

Then the following equation holds for total message delay: S priorities. The reason that there are 2L+S priorities
is because commanders can query and update files while

Bij(k) = Tjk -+- wik +r. c; "+ Tk (2.17) fsensors only update. commanders can request data on
files that sensors update or command files. Commanders
can also update command files. Sensors only update

where we have the following equalities: data stored on files. there are three service rates, one
for commanders query 1/q, one for commander update

1) lI/p, and one for sensor updates 1/1. Since the service
[ for queries times for queries are askumed to be negligible the queries

= (2.18) always have the highest priorities, the service time for
"for updates commanders updates is much less than that for sensor

updates since changing a command takes less time than

2) changing data. Therefore the commander updates have
/ for queries higher priorities than sensor updates. The arrival rates of
0 for u(2.19) commander queries to node i is X), the arrival rates of

updates commander updates to node i is 0t,, and the arrival rates

3) The values for T, and T,, are set in the recursive of sensor updates is ai. given the 2L+S priority classes
we would like to find the average waiting times for the

equation different classes. This result is found in Kleinrock's [1.21

The time delay has been calculated as the time delay for an book "Queueing Systems II" and is calculated below. The'
M/G/I queue wit.h variable service rates. In actuality this waiting times for any particular class is given by 11p:
can be modeled as an M/G/I queue with priority queueing
and variable service rates. Using a good queueing discipline

ii variable service rates shnuld cause priority queueing. In
priority queueing the messages that take less time to flp = 2 ~ I+ (2.20)
service should not have to wait in the queue for messages ( =P A,)(I .•--j- )
that take more time to service unless they are already in
the process of being serviced. Using the above equation we car find the average waiting

times in the queue for our 21.+S priority classes. Where
2.5.2. Calculation of Time Delay with Priorities A, is the arrival rate of the ith priority class; X, is the

In thiq uwet.nn wt rnn-tid- th, -H-iftie rame in which average service time of the ith priority class: and XJ is '-
commanders have different rank and desire different files. the second moment for the servica time of the ith priority
With out loss of generality let us consider the one file class. The waiting times for our 2L+S priority classes
case. In our application we have L commanders and can be broken down into six different cases. The six cases
S sensors. The commanders have different rank and are as follows: 0<p<L - 1; p =a L; L + 1<p!2L - 1;
different commandes rate the importance of particular p = 2L; 2L<p•2L + S - 1; and p = 2L - S.

2.5.2.1. Case 1

This is the case of 0Op<L -- 1:

np=..

r4.,+ 2.."t .L+$ X
+ OX,~+ r,-2,~+,

(1- _ =, ,~ -�= >,-•_ '. -- ,2+ 1 a -- t- 1(2.21) =,+ ', - .. =..+ "'..""..

The service rates for queries is zero so 7 and y are zero
for 1!5i<L-

=L + 2L+S -.-A.)

1S +1  -1- +-,i-2L+l --f '
V•+ -- 10 -* 2L + l u Il %-- ' L + l O i R t L + .i 2L -t-I

(2.22)

= s=Li +£.2L+S1-=L+ 1 1 sL+$ (2.23)
(I 2L ..,2L+25

( =- F•L+1 W 4-i-2,Lu+1 ,::':
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2.5.2.2. u&se 2

This is the case of p =L:

1L + Z2L • + r2-. .+-S

SS= T + =L+ ' *=21.+l - -
FL= (1 L X,- E2LL+ pX) _ ,2L+S_ •2L .I _ "L~f$O+,S•.

(1- X,.=L )••,-- E,~=L+I ,4 xY -- L,,i +, a,),)(1

(2.24)

Once again we use the fact that the service rates for

queries is zero:

21. 2L-+ S

(I - +,-+-+ V 2. - S j+•L21L+ I ps I ),,- S 1 -, C

(2.25)

r2L 1. + 12L+- , 
.S"

Y
2

,-,I• I • ; .... 2L+l •(2.26) - .

EM 10 , .2L 4,,+ - ., S.• - .

2.5.2.3. Case 3

Thisis the case where L-+ I <.p!2L-- 1:

( 2L. _ -2L+S . -2L z..2L4 5S= (1-- 21- - -2LS - L p2L ,= , - ,fz.+-l OX,)(I -- Ell , I, E-- ,-L i.-I 0,x;,) •.

(2.27)

Once again we use the fact that the service rate for queries

is zero:

Z2L +- .-2L+S

( Z2,=L+1 r + ip+17 -

(2.28)

2.5.2.1. Came 4

This is the case where p=2L, and we use the fact that
the service rate for queries is zero:

Lr 0, + it,2L+ I %

*i, 1 4- a _ (2.29)
E2L+S a,

2.5.2.S. Case 5 2.6. Capacity
This is the case where 2L<p<2L + S - 1, and we use
the fact that the service rate for queries is zero: What is desired is that flow of communication through

the net-work is restrict-d 'n the sense that not al!

E2L + 2L+S o commum.cation goes through one or two nodes. In olr.
- =L+l "- (2.30) words we restrict the amount of flow over a link dui.,

(1 - +-.. -)0 .- s .) x ,.iind .,r tim, Thi, 11- r.. n rt b,,, i r..re..d oer t'

capacity. The throughput is therefore limited over

2.5.2.6. Case 6 links so that more links are used.

This is the case where p = 2L + S, and we use the fact

that the service rate for queries is zero:

E - 2L fk , + _ E .2 L + $ a , 
- -T -

.,=L+! . "n, . .po,= .. (2.31) ,::~
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3. ACCESSIBILITY and Wilkov [3.3] have found an exact method or finding
there inter-node accessibility. Their algorithm first finds
a collectively exhaustive list of primal cutsets of the

This section deals with the problem of finding the network. A primal cutset are a set of links when removed
probability of accessibility of a distributed data bue denies accessibility between the desired nodes. The next
system in a fail;ng computer network. Given the locatious step is to transform the list to a mutually exclusive and
of the files stored in the system along with the probability of collectively exhaustive list of. primal c.utsets. Then the
link and node failures, one can determne the accessibility sum of the probabilities of failure of each primal cutset
of a user to any particular file in the system. A user is is the probability of nnn-accessibility between the codes.
stationed at one of the nodes of the network, while any This is the complement of the inter-node accessibility
particular file may have multiple copies stored throughout for any two nodes. This may be extended to more than
the network. Starting with the link and node failure two nodes, since the probahilhty of accessibility between
probaesbilities one An find the proea bilities of inter-node three nodes can not be easily derived from the probability
accessibilities, plj's. An inter-node accessibilities, pff is of accessibility bet ween two nodes due to the possibility
simply the probability that node i can access whatever is of dependenc.' of link failures. Ilansler, McAuli!Te, and
at node i. Once the inter-node accessibilities are found, Wilkov 13.31 state that although the algorithm could take
one can write a simple form for the accessibility ef a user exponential time to evaluate, lie states that the algorithm
i to a file I in the system, PI(I), in terms of inter-node can handle networks as large as the Arpanet.
accessibilities and file allocation variables, zil. P4(II) is
the probability of accessibility of user i to file I, given the
file allocation for file I is I. File allocation variables, zg,
are zero-one stating whether or not file I is stored at node 3.3. Accessibility
i. If file 1 is stored at node i, then z,1 is one; on the other 3 A.c.s."bil.t
hand, if file I is not stored at nole i, then za is zero. The
purpose of finding a simple form for P,1(11) is to simplify
the task optimal file allocation optimization. This section deals with the problem of finding the

probability of accessibility of a distributed data base 0
3.1. Introduction systems in a failing network. Given the location of the files
In the past researchers [3.3] have only dealt with the stored in the system, we can determine the accessibility
inter-nude rccessibilities. This is because one simply of a user from any particular node to a particular file in
wanted to find the accessibility between a user and a the system. Each file may be stored a multiple number of
service node; however, in the context of optimal file times. W. present a simple form for the accessibility of a
allocation in a distributed data base there may be user to a file in the system.
more than one service node. In optimal file allocation
in a distributed data base, it is necessary to determine
accessibility between users and their desired files where Let us consider a distributed data base with only one flue
there may be multiple co-ies of the •eesired files. Mahmoud stored a multiple number of times. For our problem we
and Riordon [3.1], and Laning and Leonard [3.2] have can consider the one file system without loss of generality
only dealt with approximations of accessibility in their since we are only concerned with the accessibility of a file
optimal file allocation optimizations. They only have to z user. We wish to find Pi(I) the probability of user i 0
access~biiity issue in the constrain,ýs of their optimal file accessing the file with a particular file allocation I. Thisallocation optimizations. In *his way, their formulation probability may be written as follows:
only rejects certain file allocations because of the low level

of accessibility; however, they do not try to maximize the
accessibility between the users and the files. We propose to
put the accessibility issue in the objective function of our N N
optimal file allocation optimization; therefore, we will not E H (I - p
only minimize the cost of a particular file allocation, but j=1 ,;, . .1

also maximize the probability of accessibility of user to N N N
files. In our formulation we wil use the exact probability + X T '1- ) + (I P,;)Pih ...
of accessibility. Once the probability of accessibility is
known in terms of the allocation variables, zj,, and N N NV N
the inter-node accessibilities, pi, it may be put in the + ..
objective function. Since this term will be non-linear in a-i ,., =
the allocation variables, it is desired to find a simple form
of the probability of accessibility so that one may easily >"-
linearize the objective function. First one mu-it ind the : ,e
inter-node accessibilities. k[pX IN (1 P,,)Pi + (I - p,,)(l -Ph)p,•. . . .

(3.1)
3.2. Intes-Node Accessibilities Where z, is a zero-one variable indicating whether the file
The term pq• represents the probability of accessing node is stored at. node i or not. If the valse of z, is one the file

from noee i and is called the probability of inter-node is stored at node i; on the other hand, if the value is zero
accessibility. Many other researchers have dealt with the the file it noy stored at node i. pj is the probability of"
problem of inter-node accessibilities. Hansler, McAuliffe, accessibility between nodes i and j.
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The first term is the probability of accessibility of user i is given. The probability of accessibility can be found
to the file stored at node j given the file is only stored at in terms of the probability of inter-node accessibilities

node j. The second term is the probability of accessibility and the allocation variables. In turn the probability of

of user i to the file given the file is stored only at nodes inter-node accessibilities can be found in terms of the

j and h. This probability is simply the probability that node and link failure probabilities. Therefore we can

user i can access the file from node j or the probability find an expression for the probability of accessibility in

that user i can not access the file at node j but can access terms of the node and link failure probabilities and the .

the file at node h. Continuing in this fashion we arrive at allocation variables. This probability of accessibility can

the last term which states that the file is stored at all the be placed in our objective function of our optimal file

nodes. so the probability of accessibility of usLr i to the allocation optimization to not only minimize costs but

file then becomes the probability that user i can access also to maximize the probabilities of accessibility. Once
the file from node j; or the probability that user i can this is done the non-linear integer program to solve our
access the file from node h but not from node j; or the optimal file allocation can be linearized to a linear zero- •
probability that user i can access the file from node g but one program. The problem now remains to develop a fast.

not from node j and jiode h; or etc.. algorithm t0 solve our linear zero-one program for optimal
We wish to rewrite this probability in a more simplified file allocation of a distributed data base in an unreliable

form. A more simplified form is one that requires fewer network using exact probabilities of accessibility. . -

multiplications and the first, second, third, etc., and higher ' "• 's"" 'ot
order terms are separated into different terms. One would
like the first, second, third, etc., and higher order terms There are two types of non-accessibility costs. There is -
to be separated into different terms because then it is the commander's non-accessibility costs and the sensor's
simple to linearize the zero-one integer program that is non-accessibility costs. The comnmander's non-accessibility
required for optimal file allocation, no mat"er if P,(1) is in cost is due to the commander's desire for information
the constraint or in the objective function. The simplified stored in the Distributed Data Base, there is a cost
form will enable one to see any special structure in the associated with the commanders not being able to access
equation. The form that we desire is recursive ,,: nature, the information due to link failures. This models the
in the sense that the probability of accessibility for N commander's accessibility costs. In the case of the sensors,
nodes is just a simple relation from the probability of multiple sensors may be feeding data into a particular file
accessibility for N-i nodes. The form we desire is the (FUSION). This data may be unusable if it is separate. . 1
following: Therefore, the data must be fused together. This may t-ot

be po.sible due to link nfalurez. There i: a ecta =.ciatted
with a sensor not being able to update the needed file. this

N models the sensor's to files accessibility costs. for example, .
P,(I) jP- •. if one sensor is tracking an object and another sensor is

trying to identify the object, then i. is clear the sensor's
Ev 1 N" data individually may mean nothing, but combined they

+I F.--I)Nv1  r. • I ZmP~m . can be very important.
•- I,,,, ':•:. . ;

"Let us define the non-accessibility coste that we are trying
N ' 4 to minimize in our formulation. let us define the non-+ I- - + ( ) 1 p,, accessibility cost as the negative value of the probability -4

of accessibility weighted by the importance of the files,
colnmanders and (or) sensors. This has an averaging effect.

where p,1 is the probability of accessibility between nodes In other words the formulation will try to allocate the
i and j. Let the probability of accessibiiity between user i files such that the more important the file the higher
and the file for an N node nctwcrk be P(N). Then using the probability of accessibility, let us therefc-" try to • .. _,. _

the above formula we may reWrite P(N) as: write down some equations relating these facts to the 0
non-accessibi!ity of commanders and sensors.

P(N) . zAPN[1- P(N - 1)] (3.3) 3.5.1. Commanders

The proof of the equivalence is done in the proof of Let us define what are our unaccessability costs for ... -.-.

the theorem in the appendix. The theorem is simply commanders.
the equivalence of the two forms of the probability of We define:
accessibility.

With this form of the probability of accessibility it is easy
to see the impact of adding another node to the system. (3.4)

3.4. Sip• :fane Of Results which denotes the accessibility of file I to th- commander

We have been able to find a simple and exact form for at node i weighted by the importance of file I to the

the probabilit) of accessibility between a user and a file commander at node i, 01,. R(N,) is the set of nodes

that we are trying' to allocate in our optimal file allocation accessible to node i. Ou is the importance of file I to

optimization. A proof of the equivalence of the simple commander i. A(1) is a zero-one variable denoting whether

form and the definition of the probability of accessibility the file I is accessible to node i; therefore, A,(/) is one if the
file is accessible and zero if the file is inaccessible. A file
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is inaccessible either if there is not a path from node i to
a node which file I is stored or if all the nodes containing N
file I are destroyed. Let us define the unaccessability costs P =() • ip.,-• .
for commanders as: j-I

N N N
+(-)+ :E :E I ""I'I~ ?fO1AOl 121 &.jo ,

+ ( 1 )N X .IT .,m. + (-I)N+1 fI
In other words the unaccessability costs is the negative
expected value of accessibility weighted by the importance.(3.g) .
of the commander ai and the importance of the file to the where p%, is the probability of accessibility between nodes
commander. i and j. Substituting the above equat:on into the non-
If we now examine the last term in the minimization, we accessibility cost of the commander gives us the final
can simplify the expression. The~ expeted value 'may be expressioa for the non-accessibility costs for commanders.
brought inside the summation. Since the importance of the 3.5.2. Sensors
commander i and the importance of file I to commander The question is how do the sensors effect our problem
i are not probabilistic, we can simply take the expected T q..ec r
value of the accessibility. However the expected value of of optimal file allocation in an unreliable network. Theproblem is that different sensors must fuse their datathe accessibility is simply the probability that commander in data files so that their information becomes useful;
i can access file I given the allocation of redundant copies whereas the data from the sensors individually is not
of file I in the network. We hve: as useful. There turns out to be a large difference if

the data in the different sensors are fused or not fused.
1 fL 1This is due to military applications where one sensor

E[ý a•iE(R(N,) E aiA(/) may be tracking position while the other sensor may be
determining identity. In this case it is very important to

L match this data together, since if one does not know the
[(3.6) identity of the object that one is tracking he does not

Lf- know what action to take.
":-•= • ¢a,5i~Pii(I). Our problem is how to model this aspect of sensors.

I-i This can be modeled in a similar way as we modeled
commanders. There will be an importance of a file to a

where sensor. Then to model the fact that the sensor data must -.

be fused together we assign an a.cessibility variable, which -' -

is non-zero only if the file is accessible to both, sensors.
I if Pr(3k s.t. I at •kER(Ni)) There are S sensors in the system then the term that is

"P=(l1) 0 if Pr(7lc s.. I at NkER(N,)) to be added to the formulation is of the following form:
I "if Pr(Vk s.t. I at N1, Nk destroyed) Oak..

(3.7) -

Where P,1(I1) for one file I, was found in the previous r s s 1 """
section to be: S,,. ,(r]S 1

11'sI(R(N,v) fln(N,))J= 2

I:;" k~~p~ S SN N N E E UuiP,'h) : adi: :
+ ~ ~~~ (1)j~[. -P.,)P~h&..+ = • ...... i 

(3.10)
N N• • N where Uii is the usefulness of file I when the data from

+ sensors i and j are fused there; and Ai(t) is defined below:

I if 3k s.t. I at NkER(N) n R(Nj). -:% + (I-- Pq)ih + 1-Pj)(1-- pi)Pi ... ] A(l) ":i- if ýk s.t. l at N•ER(Ni)rlR(Nj) (3.11)
(3.8) if Yk s.t. I at Na, Nh destroyed .

which simplifies to tle following:

Where Pl(h11) for one file I is by definition:
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C(1)Ž>C(I-(-xI for each rEX. (4-3)
N

2xkPljk - .. Then for every sequ~ncc 11(2), ., 11(r.), which are sub-
sets of X, such that jj(k) has k elemnents and 1?(k) Dl?(k4 1),

N JVN the following is true:II ,

+ ~ ~ ) (.)J-fj ~ +~ 1~N~ $jXm, C (I) >C(I R?1 )C(I ---R 2 )C(I- R"')) (1]Ž..)
ý_ I :. -- i(4.4)

(3.12) 4.4. Theorem IV in words and its implications
where P:,kA is the probability Of accessibility between nodes
iand k, and nodes j and k. The. problenm with this newThoeIVsastatiagvnvrexasactgetr
formulat ion isti) ti xrieydfiutt idthe than the cost of any vertex along the pathi leadiog from it,
P,,k's since P,,,. can not be found easily from p~k and ~* then the sequence of costs encountered along any nne of
since ihes,! t%- . nailte ar Puinepnet khs these paths increase mnonot~onically. Thus in order to find
two probabili: ies atre not indepenidentbaueheph the optimal allocation policy, it is sufficient to follow every
taken from node i to node k may cross the path t knfo ah of the cost graph in thr reverse direction until the
node jto node k. 'The final reforrmulation is as follows: cost decreases and no furt~.er. This will give an allocation

of local optimum of which the global optimum is one of .0
them.

min C(I1 )~

"?1ý" ý 1 f,~ l',,k kr1 + 8- 1 .~5/ PCI 91 1 sP 1~

(3.13)

4. NEW THEOREMS
Thenewtherem prsened erealog wth heoems111This allows us to reduce the solution space of the integcr

program. Once we find a local optimum then we knowThe ew heoems resnte her alng ith heoemsIIIthat any more file allocation is not required so 0-~t theand IV of last year's paper 114.1] show that the objective integrer program will not, have to sac, o oltosifunction is convex in the number of redundant file copies. that pact ofuton the souiope
Usig tis esutwe may find an efficient heuristic

algorithm to solve the optimal file allocation problem by
ant efficient search for the optimal number of redundant
file copies. 4.51. 'lTheorrm XV

4.1. Theorem 3M1 As the number of rediindant copies of a file increases thle
ifobiject~ive flinctiols is cotive(. In, other words t he objective
Iffuniction first decreases to a local mnjiinisumn. th it increases

as thle numnner of rcdlumdant. file cop~ies increasie.

C(I- kI) c(~-[i 2)) for 1,. (.1)4.6. Theorein XV in words and its imiplications

then Tleome'n XV simrply states that, the oljcc~ive functionis colVi X inl tile tiumtilwer of redlundant file copies. lIbis
will eniable uts (~o develop algorillhnis ihat will sol v( ourC(J)Ž(I-..-k)) for k =1, 2, (41.2) formulation. '"le wor'st, ease( of ~ouralgorithmt will [w' better
than any previous algorithm.

4.2. Theorem XI1I :it words and its implications

Theorem XI1I states that on our cost, graph if t~o
decendents of a given vertecx have a cost greater ;isan
the cost. of thle. vertex, then the cost of the decrudents of
tile two vertices is greater than either of tile two vertices.

.4.3. Theorem IV

Giver, an index set XD)I, containing r elementos with the 
_following property:
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S. LINEARIZATION

mrain i ~j~djk.Tk + min ),jldjk - . TIA - ciP.iPs#I)

The probiem with the formuiation stated above is that
there are two non-linear terms in the formulation. These The first non-linear term is the minimization over all I of
terms will be seen to be non-linear in the x's which ,jdk. However the terms Xj and dj are simply the query
are zero-one integers. Thetefore our formulation as it traffic emauating from node j and the communication

currently stands is a non-linear zero-one integer program. cost from node j to the file at nrde k respectivcy. These
However as it will soon be seen that a non-linear zero- terms are known apriori, therefore it should be possible to

one integer prograw can be changed to a linear zero-one represent the minimization as a series of non-linear terme.
integer program vwith the addition of some simple linear This is indeed the case. Without loss of generality let us
constraints. The two terms t!.at are non-linear are listed suppose that we can reorder the product of these terms
below: from smallest to the largest, with tho smallest having the _ -

smaller index k. Then let us define the following:
1) min Xdjik (5.2)

)= ((5.5

Now assuming that the uIk's arc ordered in increasing
order we can represent the minimization as a sum of

The non-linear portion of the above non-linear terms is non-linear terms as follows:
simp~y:

1) min (5.4) mini X.d =" "

N-,

2)Pi(11) (5.5) -JJX) + J2. .-.. .. + P.N -

Now without loss of generality we cars assume the case of (5.10)
only one file, so let I = I,. With this our two non-linear (5.10)

Now once again we see that these terms are once again
non-linear in terms of the zero-one x's of of integer
program.

1) mi~n Xidik (5.6) . .
1) To reduce the above non-linear zero-one problem to a

linear zero-one problem, we first consider the objective

L. function. Let us define:

2) • aP,(!) (5.7)

In tLe secund equation the non-linear term is Pi(!), which X,,...CV XX, XX, q = 2 ... ,Q (5.11)has been proven in theorem XII to be: "

which takes value zero or one, where Q is the highest

degree of nonlinearity. We then represent each nonlinear

WNist its Uhe ubjective fu,,coion by Lerins of Ghe abov,; form
and then examine its coefficient. If the coefficient of the

P, 1 non-linear term is positive, we introduce the following

N N N constraint equation:
.,-. .... .:--I:~ i~:

+ &X, i,6 -"I"
""N X+Xi+ + +X1,+X.,-q+I<Xipu, (5.12)

+ (_ E)N 1I ,p + (_i)N+1 11 Zmp,,
f=''.1 If the coefficient of the non-linear term is negative, we

(5.8) introduce the following constraint equation:

Here clearly there are non-linear terms in each sum except
the first sum. The non-linear terms are in x. Now lets see Xi + X, ..+ + X.- + Xv > qX,,...,, (5.13) "" "'" "'"
if we can also find an equivalent representation for the
first non-linear term.
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0. ALGORITHMS A2  P + integer (r - P)3 -()6.2)
2j

;.1. Algorithm K redundant file allocations with cost -,9.

3ur objective function has been ,hown to be convex m 6. If A=A2 , then An=A2 is the optimal number

,he number of redundant file copies in theorem XV. Since o redundant file copies. Simply use the optimal number

)ur objective function is convex, one can do a search olf allocations for ACopA2 redundant file opies.ma

in the number of redundant file copies using the golden
-atio to find thc optimal solution, while using the linear

programming int~egcr solutions fror. the reliable network 7.1. If ip inax[//, IA, IS, I go to step 8

solution as a starting point. Let N be the number of nodes 7.2. I IR = nax(Jp, IA, In, In] go to step 9

in the network.7.-i 
R mxp,1,iR]gtose9

ihe tepfthor i a8. Set P=At and Ip•IA. Find the optimal fil- .

.'he steps of the algorithm are as follows: allocations for

I. Set the maximum number of file copies to r, from

theorem I and II. Find the cost for r optimally
,. /

placed copies with cost [R _'r P)(A- 1'

2. Lliminate all Q nodes that cost too much Al ( 2

3. Automatically add M nodes that cost so little so redundant file allocations, with cost 'A. Go to

as to always be profitable step 6. 
" " ." c I

4. Find the linear programming solution to the 9. Set r=A, and IR==Iy. Find the optimal fie

underlying reliable network. The number o" . alo at n or i op l

integer file allocations to the linear program

is P. Use these P lile allocations as an initial

file allocation. Find the cost of the optimal file (. - p(3 -

allocation for P redundant copies. This cost is A-2 (6.4)

redundant file allocations, with cost .l9. Go to

5. Find the optimal file allocatiuas for step 6.

Since the objective function is convex, the above algorithm
A, (+.1g must converge to the solution.

6.2. Algorithm U

redundant file allocations with cost. IA Find the For the totally reliable network let us examine the non-

optimal file allocations for linear term:

N-i

ruinX d,+== /'zl-+ ,(l -- z1)Z2-+ ..+ . 1AN "I (1--Zm)ZN

(6.5)

Let us redefine the variables:

:(8.6) 0+ ,"

'N (1 N)

then the non-linear term becomes:

N-I

"(6.7)

(6.8)
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Now let's linearize the equation except the last term 1. The probability of commander accessing files;
adding the appropriate constraints. 2. The probabilit) of multiple sensors accessing

3. The importance of commanders;
l l " "+(Pvi(N- t))Y123... N-I 4. The importance of sensois;

5. The importance of particular files to particular
commanders.

x'l + 2- 1 <-Y'1 6. Variable routing, %.'

T4 + x+ + x3 + 3 - 1 <Y123  (6.11) 7. Priority queueing;

8. Time delays. ,.. ., "

A + 4 + 2N-1 S Y123 .N- The theorems have provided ways to cut down on the .
possible file allocations (solution space) in which the integer

The reason we can expand this in this manner is that program has to search. Therefore, we reduce the amount
(lA,(,+11 -p-j) is always positive since they are ordered in of time requied to solve for a solution using integer
ascending order. Therefore the coefficients of the non-linear programming.
terms are always positive and the non-linear terms may We have extended and proved fifteen theorems, all
be linearized using the above constraints- The constraint -.pplicable to the new formulation. These theorems reduce
matrix is. the search space of the integer program and also prove

that the objective function is convex in the number of
... 0-1 0 0 O 0 redundant file copies.I 1 .0.. ..00.1 00

.0 0 --1 0 .- We have shown how to linearise the rormulation to produce
I 1 .... 0 0 0 -1 ... 0 (6.12) a linear zero-one integer programming formulation.

1 1 ... 1 0 0 0.

We want to show that this matrix is unimodular. Then We have developed two fast algorithms to solve the problem
sinply solve the problem in the c"s and take the inverse of optimal file allocation in the reliable and unreliable
ta find the x's. This problem can be solved in polynomial networks. For the reliable network problem our algorithm
time since the constraint matrix is unimodular. It can finds a solution in polynomial time. This is a great advance
also be solved using the simplex method which will yield over previous algorithms which all r.!qui,ed heuristic non-
only integer solutions. The simplex method needs to be polynomial time algorithms. For the unreliable network
calculated twice since the highest-order non-linear term our heuristic algorithm takes advantage of the structure .. . -"
has a negative coefficient and cannot be expanded in this of the objective function of our problem. In the •heorems
manner. Therefore once we foim ti.e constraint equations presented, we have shown that the objective function is - •-*' * "
that linearize the formulation, we solve the prnblem witiL convex in the number of redund-.nt file copies. Using this
the simplex method once with the highest-order non-ainear result we can simply use a -!arch based on the golden ratio ,. ..-..-.-
term taking the value zero and once with the value one. which will find the optimal number of redundant file copies.

This algorithm will never need an exhaustive search,
so it is superior to all integer programming soluions.
This algorithm will also find an exact solution which is

6.2.1. Steps superioc to all other heuristic algorithms that just find

These are the steps of the algorithm: approximations to the solutions.

1. Eliminate all Q nodes that cost too much Further work will be concentrated on simulating these
algorithms on a computer. We will also conduct sensitivjty 02. Automatically add M nodes that cost so little so analysis on these results for networ supto fifteen nodes.

as to always be profitable

3. Solve the problem with the simplex method y
twice, once for the highest non-linear term zcr',. 8. REFERENCES
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A COLLISION RESOLUTION PROTOCOL WITH LIMITED CHANNEL SENSING - FINITELY MANY USERS

P. Paoantoni-KazakoF, Glenn D. Marcus, and Michael Georgiopoulos

University of :onnecticut
Storrs, Connecticut 06268

ABSTRACT II. THE BCRLS PROTOCOL

In this paper, we consider the random-access of a As in [6], we assume that 2n identical, indepedent,
single slotted channel by a finite number of indepen- ann packet-transmitting users share a single slotted

* dent, data transmitting bursty users. We adopt the channel. If a single packet is transmited within a
assumption that each user monitors the channel only slot, ic is received correctly. if at least two
while he is hlocked. We also assume that the channel packets are simultaneously transmitted, a collision
"outcomes (visible to each user) are binary. That is, occurs, all informatio, contained in the collided
each chznnel slot is perceived as either a noncollision, packets is lost, and retransmission is necessary. The
or as a collision slot. We disregard propagation de- binary outcome of each slot (empty or busy with one
leys. For the above model, we propose and analyze a packet, collision) is broadcasted to all users without

"•c ollision resolution protocol (BCRLS) with tree search propagation delays. Let the system start operating at
"characteristics. For identical users with binomial time zero, and let time be measured in slot units.
transmission processes, we find lower bounds on the Lnitially, each user does not inspect the feedback, and
BCRLS througnput, and we compute upper bounds on the he is free to transmit a packet in any slot. Let some
induced delays in transmission. We compare our results user transmit his first packet at time t. He then
with those irndluced by the dynamic tree protocol of inspects the feedback that corresponds to slot t. Tf
Capetanakis; where the feedback sensiug is continuous he seas success, he stops inspecting the feedback until
in the latter. his next transmission. If, instead, he sees a colli-

aion, he initiates the BCRLS protocol for collision
I. INTRODUCTION resolution, while inspecting the feedback continuously.

SWe consider a number of data-transmitting bursty The user perceives the collision as resolved, as soonW s a e d r t uas his collided packet is successfully transmitted. He
"lisers who request access to a single network resource. then stops inspecting the feedback, until his next
We assume that the users do not !:omr, nicate with each

transmission. Transmission of new arrivals is notother directly, and that their data are formatted into trmpted T rnunil sion has bee
packets of identical length. Such a user model arises, resolved. bn this section, we will briefly describe

• ~~for example, when a num~ber tf comouter terminals access .?fo eheuathe BCRLS protocol and we will analyze its cperational
a single host computer. Let us further assume that the csee
network resource is a single transmission channel whose characteristics. Since those aspects are independent %
Stime is slotted. The length of each channel time slot of the packet-generating process per user, we will makeno assumptions on the latter at this point. We will"is equal to one packet. Also, each user can attempt nL2d such assumptions, only when we study the expected
transmission of a packet, stirting only at the beginning delays induced by the protocol, and its stability
of a slot. Given the general model above, a variety of

pirperties. More details on the BCRLS can be found in ".
transmission prutocois can be devised depending on the

I -specific characteristics of the user ond channel models. (8
Such characteristics include finite number of well-
identified users versus an asymptotically large number A. The ECRLS General Operation
of ill-specified users, as well as various levels of Given 2n users, consider the binary tree with 2n
feedback information provided to the users by the leaves. The tree has n+l levels of depth, numbered
"channel, [I 17]. from 0 to n. Depths 0 3nd n correspond respectively ta

In the present paper, we assume finitely many the root 3nd the leaes of the tree. In general, there
users, and we adopt similar user and channel models as exist 2i nodes at depth i. Each ?f these noides is the
"in 14,61. In contrast to those models as well as to root of a binary subtree wi~h 2n- leaves. Each tree
the collision-free models, however, we assume that each node beyond depth 0 is identified by a binary codeword,"user inspects the broadcast feedback only while he is where the codeword of each node at depth i:i>l contains
blocked. By blocking we mean the existence of some i oits. Consider tihe depths of the binary tree
unsuccessfully tuansmitted pccl-et in the user's buffer, evolving sequentially from left to right (as in figure
Our assumption is the same as in 04,1], and it eliminates T1.1), and let some node at depth i:l<i<n-l be identi-
the often urdesirable requirenent that all users monitor fied by the binary codeword xlx 2 .. .xi. Then, the two
""e channel constantly, even when empty. In contrast to nodes at depth i+l that branch off node XlX2 .. .x are
[14l, we assur! that the feedback is binary, distin- identified by the codewords xl...xi0 and x1 ... xjl node.
guishing between collision and no..c>llision slots. For Xl...xil lies under node xl...xiO. The two nodes at
the above model we propose and analyze a collision depth 1 that branch off the tree root R are identified
re~ulution protocol. We name this protocol Binary by the length one codewords 0 cnd 1, where node I lies
Collision Resolution with Linited Sensing (BCRLS). ander node 0. It is clear from the above that each

binary codeword x1 ... ,.J:1<i<n identifies a single tree
node at depth i; thus, it also identifies the unique

This work was supported jointly by the National Science path that connecLs this node with the tree root. In
Foundarion under the Grant FECS-811h835i and the Air particular, ea~n one of the 20 di~tinct binary code-
-Force Office of Scienti~ic Resarch under Grant AFOSR- words of length n identifies a single tree leaf. COn-
"78-:'95. suier now a one.-to-one corresponden'e between the 2n
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users and the 2n binary codewords of length n. Then, 2 ;- it x 0 n
each encoded user is uniquely identified by a single a n-k+l

binary codeword of length n. But, as we saw above, 2 if x 1, and k > 1
Keach such codevword also identifies a single leaf on the wn-k+l

(n+i) - depth binary tree. Thus, there exists a one-

, 2k-l.

to-one correspondence between those tree leaves and the 2 a if xn+ a 0, and k 0
2n encoded users. Let the 2n users be encoded by a sg
binary sequences of length n, and let each user have in 2 n-l - ,andk -"
its memory a reproductioa of the (n+l) - depth binary 2 T ifxe es a 1 , 2ndk"

r. tree. Each user considers himself placed on the tree Let the user be in resolution mode 2 at time t1 . Then,

leaf whose codeword coincides with.his own. If we
number the 2 n users from 1 to 2n, the codeword uf the 1) If he observes a collision in slot t1 , he
ith user is the length n binary representation of the moves at time tl+l to resolution mode:
numbLr i-l. From now on we will identify some user 2 n-l if k
either by his number or by hiv codeword. Let t, be 2 a
some time inbtant such that all collisions invoiving a 0 I
packets from user i have been previously resol~ed. Let 2n-i
tlser i transmit again at time t, where t>to and the w = 0, and x1 , 1
user did not transmit in the time interval (tot). Let Otherwise, he remains in rksolution mode
there be a collision in slot t. User i observes this O

collision and starts the motions for its resolttion. Iii ii) If he observes an either empty or a success-
the process, he uses the (n+l) - depth binary tree in ful slot tl, he mvoes at time em+l to resolution

traces sequentially neigh'oring tree nodes, in an order mode:

dictated by the feedback. At the same time, hu imagines 2 k-a; if his node-tracing reaches node
himself placed at different tree nodes depending on the a i... Xnok+e at tine ta+l. node
relctionsitip between the current nooe in the trace and ak
the user's codeword. The user transmits, when the node Ottic.wise, he remains in resolution mode 2.
he has placed himself at coincides with the trace node.
To explain the collision tesolution process coherently, 3. Let at time tj user i be blocked. Let yoyl_---Yi;
we need to discriminate between node tracing and user O<_.<n be the node reached by the user's node-tracing at
node self-placing. To do that, we first present the time tl; where if &=0 the node is the tree root. Then,following def inition.

Definition 1 i) If the user obEerves a collision at tl, he
moves at time tl+l his node-tracing to noe,.:

At some point in time, user i is blocked if he is
in the process of resolving a collision. The blocked yl.. .yO; if l<_<n-"
S user i is in resolution mode 2k;O<k<n if he imagines O; if either 1-O or tnI himself placed at a node that lies at the tree depth
n-k. If k<n, and if xlx2 . .. xn is the user's codeword, ii) If the user is in withholding resolution modeth oescodeword is xlx2 .. Xn-k. Th". user is in .

k ihe ise in e u at time tl, and observes either empty or successful
resolution mbde 2 and active 2,) if he is in resolu- slot t 1 , he moves at time tl+l his node-tracing to "
t~ri mode 21 and transmits. He is ln resolution mode node:
2 and withholding (?Z) if he is in resolution mode 2'
and does not transmit. The blocked user I is in state y.. Yml 1; l<mCL
2kl,..t :1<n if he is in resolution -

"mode OCT his node tracing has reached the tree node ; where m-y -l; m+l<et and Y,=O, for !>L and
whose binary codeword is y1 ." 'y, and he is respectively Yl''*Yt suc that not -all bits yj are equal to one.d
Pctive or withholding.
% _______iii) If the user is in active resolution mode at

Let xl...xn be the codeword of user i. Let the blocktime t 1 , d obsees success, he becomes un-
user be unblocked at time t-l, and let him transmit and blocked.
be blocked at time t. Then, the BCRLS protocol per- Statements 1 to 3 above, basically describe a tree
formed by the user is described by the following state- search ac in [6]. The difference here is that this
merits, search is not performed simultaneously by all users.
1. At time t, the user iu'n;ires himself placed at the Thus, it is possible that when some user's search
root of the tree and ý.&ausmitting. Observing collision, reaches a leaf node, a collision occurs. Then, as
he also starts Uis node-tracing at the tree root. Thus, statements 1 to 3 indicate, the user interprets this
at time t user i is in state (2 ,R). collision as a root collision, and he reinitiates his

2. Let at time tI user i be blocked and in resolution tree search.
mode 2k.;o<k<n. Then, by definition 1, the user has Be o"
placed himself at node x, ... Xn,. If he is in resolu- B. Properties of the BCRLS
tion mode 2•, he transmits in s o tI. If he is in As we explained previously, the BCRLS tree search
resolution mode 2A, he does not. He cannot be in reso- is not performed simultaneously by all the 2 n users.
lution mode 2

a, unless his node-tracing has reached Indeed, each user initiate3 his own BCRLS when he be-
\ node xl...Xn-k. Let the user be in resolution mode 2 comes blocked. Therefore, at some point in time, there
at time t 1 . Then, may be some blocked users at various levels of their 2

Si) If he observes success in slot t1 , he becomes tree search, and some unblocked users. The unblocked
unblocked. users do not inspect the feedback. Among the blocked

users, there will be some in active -esolution mode and
ii) If he observes collision in sicr tl, he moves some in withholding resolution mode. Any poscible
at time tl+l to resolution mode: collision will be caused by the active users, and will

be observed by all the blocked usets. Among the users
who are blocked and in withholding mode, we will single
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out those who are either in state ( 2k. xl..n-kI 0); L({2a,Nk};l<k<n,[M]): The expected number of slotsO<k<n-l, or in some state (2., xl...Xk_1 o...,); a'k -
Soeeded for the resolution ef the collision re-

l<k<n-1, where xl...kXn-k- 1 are the first n-k bits of presented by the event ({2a,Nk};lZk<n,[M]) in '2),
the user's codeword. To discriminate between those Just after this collision has been observed. (3)
users and the remaining blocked and withholding u ers, r h v i 8n
we will denote the resolution mode of the first 2e k n
ks shown in [18], if a user is in resolution mode ke L 2ka kr,[ ; .N•.2
and observes an either empt,, or a successful slot, he L(a,Nk};l<k<n,[M]N
moves to resolution mode 2k. Let us denote, k=-

a ( {22,Nk} ;k,{ e,Pk};O<kn-l,[•M]): The event that at n ".''n
some point in time there are M unblcked users, 2+L({2 ,,+Nl 2},{2kl,Nk2};2<k<n,[M+r Nkl-S])

Nk;0<k<n users in resolution mode 2a, and Pk;O<k<n-I-- k-l
users in resolution mode 2e" (I) m. . ; if m + E<N

We now present a proposition whose proof is in <1kl

2+L(2,m+N N {2 N ; 2<k<n, A-m])
Preposition 1 a' 1' a 'kl'

"Givep 2 n users, consider the event ({2k, Nk}; nn k
O<k<n, (.e,Vk};0<k<n-l,[M]), at some point in time. +L({2as a2-' Nk; 2<In•[M+N + kl
Then, for every k<n-I such that Nk>O, the first n-k k,

" " codeword bits of the Nk users are identical; thus the n
Nk users branch off the same tree node at depth n-k. ;if m + N >l •2 (4)
The same is trne for the Pk users, if Pk>O. Therefore, k kl -

Nký2k, and Pk2k.
_ _ _Let us now consider the Nk users who are in reso-

L u o u e at m m n nlution mode ?k. Those users have a common codeword•Let us now suppose thalt at some time instant t,a

the event ({2a,NkI;O<k<n,{2we,Pk};O<k<n-l[M]) occurs, prefix xl(k)...xn_k(k), and they are at most 2k. Let

such t}at 0k<n, le the codewords ofcths.k us define by P(Nkl/Nk), the probability that given the "
For some k ch that O<k<n , let the codewords of the Nk number Nk, there are Nkl users whose codeword prefixusers have the common prefix xl(k) ... xn-k(k); where for iz Xj(k)...xn.k(k)O. Then, Nk2 will be eaual to Nk-
k-n this prefix is the tree root. Among those u-ers, k k Thw bt
let us have Nkl with common codeword prefix xl('.)... rkl, and cleirly,
Xn~k(k)0; let .s have Nk2 with common codeword prefix

"xl(k) ... Xn.k(k)l. For some k such that O<k<n-l, lei
the codewords of the Pk users have the corMoer prefix Nkl /•Nk-Nkl k-l""..Yl(k) ... Yn-k-l(k)l. Then, yl(k) ... Yn-k-l(k)l rannot be P(Nkl• = (•) ;k < Nkl_ -.

identical to xl(k)...Yn.k(k). if Po+No=2, then yl(O).. " "(.
2

-kak

'*1 .yn-l(O) and xl(O)...xul(O) are identical. This last
7 statement evolves from proposition 1. and it is proved

n n k-i (5)

in 1181. If L .NkO, slot t is empty. If < Nkml- m ( Nk( (N)

k-O k=O T H.RPFMN

"slot t is a successful flot. and then the one active III. THE BCRLS PERFORMANCE

n As we saw in section II, if at some time instant
* user becomes unblocked. If O Nk2, slot t is a t the event ({2a,Nk};l<k<n,[MI) occurs, then M denotes

k-O the number )f users who are unblocked at t. To this - I
collision slot. 'The above observations lead to some point, we made no assumptions as to the transmission
simplifications regarding the events in (1) and their characteristics of thoz;e users. Here, we will assume,
transitions in time. To show that, let us first as in [6], that an unblocked user transmits with prob-
denote, ability q per slot. Thus, if at some point in time
({2k,Nk};l<k~n,[M]): event such that at some point the number of unblocked users is M, then the proba-

Th bility Q(m,M) that m users will transmit is given by
" in time there are H unblocked users, Nk; Vk<n users te s

kh andoin noxuersinsrsoltioin resolution mode 
2
a and no users in resolutionh

mode 20. (2) H-in
Q(m,M) = (M) I ;(1-q)-;O<m<M (6)

We now present a proposition whose proof is inS• 18]The implication behind the expreS31on in (6) Is
[-8]. that the unbloc,ýed users transmit independently. This

Preposition 2 is consistent with the independence assumption made at

".Let at some time t the coilision event ({2a,Nk} the beginning of this paper. Using expressions (4),
Letkatsome toccur. thLet ofur some evkntcknbe ' (5), and (6), we can express an equation for the•: l1<k<n, WH) occur. Let for some k:l<k<n be Nk] users expetdvau L(2aN}lk _,M) Thseuton is

NkIusrs-"'- value L({2k Nk);lý<k.n,[MD-. Thseut
with codeword prefix xl(k)...xn.k(k)O,-and Nk2 users kwith codeword prefix xl(')...xn-k(k)l. Then, none of given in [18], it relates the expected values of"the n differeit events as in (2), and it determines a linear. n %

-the .N users and the users that are in withholding system of ,-quations whose solution is the set of

k=l n expected vai;,ts as in (3).
mode at time t become unblocked, 1efore all th! E Nkl lef- aition 2

k=l kusers do, and before all the users who become blocked Given 2 n users, the throughput 2nqn of the BCRLS

in the mean time transmit successfully. protocol is such that every'q less than qn provides a
bounded and nonnegative solution for the linear system
in [18], and no q value larger than q. does.

Let us now denote,

For given q value, the solution of the linear
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MONDAY MORNING. JULY 25 .1983

SESSION 1: ROOM 10-250:

Chairman: Protesso: Michael Athens, MIT

S8:30 - 9:00 A.M. REGISTRATION

9:00 - 9:30 A.M. INTRODUCTION AND WELCOME

Professor Michael Athens, MIT

Dr. Charles 3. Bolland. ONR

9:30 - 10:00 A.M. MULTI-SENSOR FUSION, COMMUNICATIONS AND INFORMATION
WARFARE

D. Schutzer, Office of Naval Intelligence

10:00 - 10:30 A.M. C' ASSESSMENT IN A MISSION AREA CO:'TEXT

L. T. Joe and S. H. Starr, M/A-COM Linkabit

10:30 - 11:00 A.M. BREAK

11:00 - 11:39 A.M. AUTUMATED WAR GAMING AS A TESTBED FOR EXAMINING
ISSUES OP STRATEGIC C' I

P. K. Dav's and P. Stan, The R•ND Corporation

11:30 - 12:00 P.M. LANCEMSTER'S ECUATIONS AND MATRIX GAMES

3. M. Wozercraft and P. H. Moose
Naval Postgradnate School

12:00 - 1:30 P.M. LUNCH BR7•AK

MONDAY A.-nITNNON. JULY 25. 1983

SESSION 2: ROOM 10-105: DETECTION AND LOCALIZATION

Chairman: Professor Robert 1. Tenney. MIT

1:30 - 2:00 P.M. DETECTION MODELINQ OF UNSATURATED AND PARTILLY
SATURATED OCEAN ACOUSTIC 3IGNALS

A. N. Perakis, University of Michigar.
E. N. Psaraftia and H. 1. Gonzalas, NIT

2:00 - 2:30 P.M. FURTHER RESULTS IN MULTIPLtTFORM CCRRELATIJN AND
INTEKSHIP ALLIGNXENT IN THE NAVAL BATTLLGROUP

* M. Kovacich, Comptek Research. Corp.

2:30 - 3:00 P.M. THE USE OF RECIPROCAL POLAR CO-ORDINATES IN PASSING,
TRACKING

"A. Damford, SCICON. Ltd.

* 3:00 - 3:30 P.M. MANEUVERINU FOR BEARINGS-ONLY ESTINATION

G. Z. Wilhoit, U. S. Nwv
R. R. Tenney, MIT
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3:30 - 4:00 P.M. BREAK

4:00- 4:30 P.M. GESERALIZED TRACXER/CLASSIFER (GTC) - A SYSTEM FOR
TRACKING AND CLASSIFICATION OF MULTIPLE TARGETS.

S. MoNr, C. T. Chong. and R. P. Wishner
"Advesoed Informstioe and Decision Systems

B. Too, Stanford University

4:30 - 5:00 P.M. OPTIMAL MANEUVER DETECTION AND ESTIMATION IN
=MULTIOBKECr TRACKING

T. Kuvien and A. Blitz. ALPIATCKZ, Ins.

5:00 - 5:30 P.M. A FRAMEWOIRK FOR SURVEILLANCE ALOORITiM EVALUATION

1. Weiss. Draper Laboratory
R. R. Tenney, MIT

MONDAY AFTERNOON. JULY 25, 1983

SESSION 3: ROOM 10-250: C' SYSTEM EVALUATION

Chairman: Dr. Alezander B. Levis, MIT

1:30 - 2:00 P.M. REQUIRBuINTS FOR TEN NAVY TACTICAL Cs SYSTEM

L. S. Peters. SRI Intersnational

2:00 - 2:30 P.M. A LARGE-FCAJA CONTROL SYSTEM ANALYSIS UNTRODOLOGY

D. R. Friedman, The MITRE Corp.

"2:30 - 3:00 P.M. TECI4I1UES FOR DETECTING COVEM AND DECEPTION

"" R. Gerona. BETAC. Corp.

S3:00 3 3:30 P.M. A COMPARISON OF DEPENSE C2 MODELS

3.R. Dowdle, N.P. Merriman, R. F. Gendron, sad
L.C. Kramer
ALPHATECS, lnc.

3:30 - 4:00 P.M. BREAK

* 4:00 - 4:30 P.M. OPTIMAL SHIP POSITIONS FOR n DV BATTLE GROUP DEFENSE

A. Athena, sad R. C. Magouet-Neory, SIT

4:30 5:00 P.M. EVALAUTING TOR RESPONSE OF COMP1E STSNS TO

INVIRONEWNTAL THREATS: T"E IT GO

0. C. Corynen, Lsvreues Livornot~e National Laboratory

5:00 - 5:30 P.M. SOFIWARE FOR EXPLICITLY PROBABI•STIC MATHEMATICS.

U". N. Goldstein, The MITRU Corporstios
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TUESDAY MORNING. JULY 26. 1W93

SESSION 4: NOON 10-250

Chairman: Professor Robert R. Tenney

8:30 - 9:00 A.M. REGISTRATION

9:00 - 9:30 A.M. SURVEILLANCE URSEARCH AT MIT

A. R. Tansy. NIT

9:30 - 10:00 A.M. DISIRIBUTID ESTIMATION IN TRE MIT/AL DSN TEST-BED

3. 1. Delaney, 3. T. Laooss, P. Z. Gre**
Lincoln Laboratory

10:00 - 10:30 A.M. DECISIONMAKINO: A COMMANDER'S CONSIDERATION

V. Meyers. U. S. Navy (Rot. Admiral)

10:30 - 11:00 A.N. BREAK

11:00 - 11:30 A.M. ARTIIAZR! CONTROL ENVIROtNENT

S. Wolff. Ballistic Research Laboratory

11:30 - 12:00 P.M. COMMAND DECISION MAKERS AND THEIR NODES OF
INTERACTION

P. D. Morgan, SCICON, Ltd.

"12:00 - 1:30 P.M. LUNCH BREAK

TUESDAY AFIERNOON, Jull 26, 1983

SESSION 5: ROOM 10-105: DISTRIBUTED ESTIMATION AND DATA FUSION

Chairman: Professor Robert 1. Teaney. NIT

1;30 - 1:00 P.M. NULTI-SEWSOR FUSION IN A MULfI-TARGET ENVIONMENT

R. N. Lobbia and D. L. Alspach, ORINCON

2:00 -2:30 P.M. DISTRIBUTED ESTIMATION SYSTEMS

C. Y. Chong. S. Mori, Advanced Information and-

Decision Systems
B. Tee, Stanford University

2:30 - 3:00 P.M. DISTRIBUTED ESTIMATION WITH COMMUNICATION DELAY

A. Otbek and R. A. Tenney, NIT

3:00 - 3:30 P.M. TRACK ASSOCIATION ALOORITHMS

A. Bamford. SCICON. Ltd.

3:30 - 4:00 P.M. BREAK
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4:00 - 4:30 P.M. INCA: AN ENVIRONNMNT FOR EXPLORATORY DEVELOPMENT OF
TACTICAL DATA FUSION TECHNIQUES

L. S. Gross and H. 3. Payne, VERAC, Inc.

4:30- 5:00 P.M. A UNIFIED APPROACH TO MODELING AND COMBINING OF
EVIDENCE THROUGH RANDOM SET THEORY

I. R. Goodman, NOSC

5:00 - 5:30 P.N. EXPERT SYSTEMS APPLIED TO AUTOMATED MILITARY
INTELLIGENCE

M. B. Womble, Lockheed Missile and Space

TUESDAY AFTERNOON, July 26, 1983

SESSION 6: O01N 10-250 : ORGANIZATION MODELS AND DESIGN

Chairman: Dr. Alexander H. Levis, MIT

1:30 - 2:00 P.M. DISTRIBUTED OPTIMIZATION ALGORITHMS WITH

COMMUNICATIONS

3. N. Tsitsiklis and M. Athans. MIT

2:00 - 2:30 P.M. A LAYERED MOVK. FOR COMMAND-CONTROL

V. F. Griss. Hazeltine Corp.

2:30 - 3:00 P.M. MODELVIG THE ASW TACTICAL C3 DECISION PROCESS

M. Alezandr1dis, 3. Deckert. E. Rntin, and 3. G. Wohl
AIPHATECH, Inc.

3:00 - 3:30 P.M. THE DESIGN OF INFORMATION STRUCTURES:
BASIC ALLOCATION STRATEGIES FOR ORGANIZATIONS

D. A. Stabile, ICF, Inc.
A. H. Levis. MIT

3:30 - 4:00 P.M. BREAK

4:00 - 4:30 P.M. MESSAGE STANDARDS IN SOFTWARE ENGINEERING

3. V. Bronson, Col. U. S. Marine Corps

4:30 - 5:00 P.M. NULTI-OBIECTIVE DECISIONMAKING. INCOMPIZE INFORMATION
AND COORDINATION PROBLEM IN C' SYSTEMS

K. Loporo and M. Mesarovic

Case Western Reserve University
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"W"DNESDAY NORNING, JULY 26. 1983

SESSION 7: ROOM 10-250

Chaisman: Professor Robert 1. Teoomy. MIT

6

8:30 - 9:00 A.M. REGISTRATION
/

9:00 - 9:30 A.M. COMMAND AND CONTlROL ORGANIZATIONS FOR NAVAL BATTLE
FORCES

-. Athas., MIT
U

9:30- 10:00 A.N. INDIVIDUAL DIFFERENCES IN MILITARY DECISIONNAKING:
TIE CLAASIFICATION PERFORMANCE OF ACTIVE SONAR
OPEAATORS

". 0. ,oh1, ALPRATRCHo Inc.

10:00 - 10:30 A.N. DECISION AND DISPLAY ANALYSIS IN A SIMPLE
SURVEILLANCE PROBLEM

"1. L. Hershmau. F. L.*Groitzf.° NPRDC

10:30 - 11:00 A.M. BRD•C
/

"11:00 - 11:30 A.M. DISTRIBUTED.ASYNC.RONOUS ALOORIT7M

"D. P. Bertsekas. NIT

11:30 - 12:00 P.M. HYBRID ROUTING IN COMMUNICATIOh NETWORKS

A. SesUll. 3. N. Jaffe and F. H. Moss
IBM Thomas J. Watson Research Center

12:00 - 1:30 P.M. LUNCH BREAK

WEDNESDAY AFTERNOON. JULY 2?. 1983

SESSION 8: ROOM 10-105: COMMUNICATIONS

Chairman: Professor Robert 1. Tenney, MIT

* 1:30 - 2:00 P.M. INTERSHIP SENSOR ALIGNMENT USING UHF TACTICAL DATA
LINK RELATIVE NAVIGATION

B. H. Overton. Comptek Research. Inc.

2:00- 2:30 P.M. COMMUNICATIONS SUPPORT OF DISTRIBUTED COMMAND AND
CONTROL

G. A. Clapp. NOSC

2:30 - 3:00 P.M. THE USE OF SUMMARY DISPLAY TRANSFERS FOR COORDINATION
BETMEW COMMAND FACILITIES FOR TEE COMPOSITE WARFARE
COMMANDER AND THE ANTI-AIR WARFARE COMMANDER OF A
NAVY BATTLE GROUP

C. 1. Grant. The Johns Hopkins University
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3:00 - 3:30 P.M. BREAK

"3:30 -4:00 P.M. DATA BASS REDUNDANCY IN VULN4ESALS COMMUNICATION
NETWORKS

K. Ma, amd X. Athane. KIT

4:00 - 4:30 P.M. A COLLISION RESOLUTION PROTOCOL WITH LIMITED CHANNEL
SENSING FINITELY MANY USERS

P. Papantoni-Kazakos, G. D. Marens, M. Georgiopouloa
University of Connectiust

4:30 - 3:00 P.M. OPEN

5:00 - 6:00 P.M. WINE AND CZEISS (BUSH 200O 10-105)

WEDNESDAY AFTERNOON, JULY 27, 1983

SESSION 9: ROOM 10-250: HUMAN DECISION MODELS

Chairman: Dr. Alexander B. Levis, MIT

1:30 - 2:00 P.M. umaN DCISIONAIlNG IN DYNAMIC ENVIRONMENT wiTH
INCREASING INFORMATION PROCESSING DEMANDS

D. Serfaty, University of Conneoticut

2:00 - 2:30 P.M. C'I SYSTEM DESIGN AND DEVELOPMENT: INSISGT FROM THE
BEAVIORAL SCIENCE PERSPECTIVE

* D. L. Finley. Army Researeh Institute
V. P. Cherry, Veetor Research. Ine.

2:30 -3:00 P.M. MODELS OF INFORMATION STORAGE AND MIORY IN C'
SYSTEMS

S,#. 1-emal, M. Inv.--

A. B. Levis. MIT

3:00 - 3:30 P.M. BREAK

3:30 - 4t00 P.M. THE COGNITIVE ORGANIZATION OF SUBARINE SONAR
INFORMATION: A MULTIDIMENSIONAL SCALING ANALYSIS

9. Lazar, G. Moeller. and V. Rogers
Naval Submarine Medies Research Laboratory

4:00 - 4:30 P.M. THE EFFECTS OF SPATIAL INFORMATION DISPLAYS ON
DECIION MAKING PERFORMANCE IN TACTICAL C SYSTEMS

B. D. Seott and C. D. Wiekens
University of Illinois

4:30 - 5:00 P.M. DEVELOPMENT OF A GENERALIZED XUMAN-MACHINR INTERFACE

R. R. Knox. Lockheed ,lectrouics Co.. Inc.

5:00 - 6:00 P.M. WINE AND C(EESE (Bush Room 10-10S)
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IHURSDAY MOR3NING. JULY 238 1983

SESSION 10: ROOM 10-250

C hairman: Dr. Alexander B. Levis, MIT

* 8:30 - 9:00 A.M. REGISTRATION

9:00 - 9:30 A.M. PROEBLS IN TEE ANALYSIS AND EVALUATION OF
"INFORMATION PROCESSING AND D•CISIONMAKING
01'' N•ATION3

A. R. Levis. KIT

9:30 - 10:00 A.M. DOING C" ZIPERIMENs WITH WAR GAMES

-. S. Lawson. Jr.. NAVELKI

"10:00 - 10:30 A.M. DESIGN OF A SYSTEM E[CUTIVE FOR THE MANAGOEWNT OF

*- . COIAND•/CONTYOL FACILMIES

B. 1. Ducot. MIT

/10:10- 11:00 A.M. BREAK

..D 11:00 - 11:30 A.M. A KINOWLEDGE BASED, DITERACTIVE PUOCFDURE FOR PLANNING
AND DECISION SUPPORT UNDER UNCERTAINTY AND PARAMETER
IMPRECISION

A. P. Sage and C. C. White. III
University of Virginia

11:30- 12:00 P.M. DAIA INTEGRATION FOR COMMAND AND CONTROL SUPPORT
SYSZTMS

".. C. Machado. NAVELEX

12:00 - 1:30 P.M. LUhZ BREAK

.IURSDAY AFTERNNON, JULY 28. 1983

"SESSION 11: ROOM 10-105: THEORETICAL ADVANCES

Chairman: Professor Robert R. Tenney. MIT

1:30 - 2:00 P.M. A NINIMUM SENSITIVITY INCENTIVE CONTROL APPROACH TO
TEAM PROBLEMS

T. Bssar, 3. B. Cruz, Yr.. and D. Cansever
"University of Illinois

2:00 - 2:30 P.M. SUBJECTIVE GAMES OF INCOMPLETE INFORMATION

"D. Teoioketzis and D. Castanon. ALPELATECH, Inc.

"2:30 - 3:00 P.M. OPTIMAL STRUCTURES IN DYNAMIC TEAM PROBLEMS

R. R. Tenney, NIT
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3:00 - 3:30 P.U. ON THE COMPLEXITY OF DISTRIBUTED DECISION PROBLEMS

J. Tsitsiklis and M. Athans, MYT

3:30 - 4:00 P.M. BREAK

4:00 - 4:30 P.M. ON THE ASSIGNMENT OF LEADERSHIP IN STACKELBERG GAMES

K1. Lopa:o, Y. Choe, and S. Kahne
C.se Western Reserve University

4:30 - 5:00 P.M. DYNAMIC, HIERAR(HICAL DECISIONJ PROBLEMS

P. B. Luh, and T. S. Chang, University of Connecticut

5:00- 5:30 P.M. ON THE CONTROL OF SYSr.LMS WITH ABRUPTLY CHANGING
STRUCTURE

B. E. Griffiths and K. A. L.:paro
Case Western Reserve riniversity

THURSDAY AFTERNNON, JULY 28, 1983

SESSION 12: ROOM 10-250: DECISION AIDS

Chairman: Ms. Elizabeth R. Ducot, M.IT

1:30 - 2:00 P.M. A MAN-MACHINE INTERFACE CONCEPT FOR A STATE-OF-ART,
PROGRAMMAEL2. SHIPBOARD, COMMAND/CONTROL CONSOLE

G. Osga and R. Flemiag, NOSC

2:00 - 2:30 P.M. TACTICAL DECISION AIDS WHICH QUIANTIFY JUDGE.xilNT

""f. V. Drown, Decision Science Consortium, Inc.

2:30- 3:,00 P.M. EVIDENTIAL REASONING FOR SITUATION ASSESSMENT

-- -T. D. Garvey and I. D. Lowrance, SRI International

3:00 - 3:30 P.M. AN EVALUATION OF ARIADNE

C. C. White, III and A. P. Sage
University of Virginia

3.30 - 4:00 P.M. BREAK

4:00 - 4:30 P.M. PERSONALIZED AND PERSCRITPIVE DECISION AIDS

M. S. Cohen, MAXIMA Corp.

4:30 - 5:'jO P.M. SIM: A SMART INTERFACE TO A MODEL

A. L. Blitz, R. R. Tenney, L. C. Kramer
ALPHATECH, Inc.

5:OC 5:30 P.M. ON THE NEED FOR WELL STRUCTURED C' EXPER.MENTS

F. C. Deckelman, NAVELEX
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